Environmental Science and Pollution Research

, Volume 25, Issue 9, pp 8432–8440 | Cite as

Benchmarking the efficiency of the Chilean water and sewerage companies: a double-bootstrap approach

  • María Molinos-SenanteEmail author
  • Guillermo Donoso
  • Ramon Sala-Garrido
  • Andrés Villegas
Research Article


Benchmarking the efficiency of water companies is essential to set water tariffs and to promote their sustainability. In doing so, most of the previous studies have applied conventional data envelopment analysis (DEA) models. However, it is a deterministic method that does not allow to identify environmental factors influencing efficiency scores. To overcome this limitation, this paper evaluates the efficiency of a sample of Chilean water and sewerage companies applying a double-bootstrap DEA model. Results evidenced that the ranking of water and sewerage companies changes notably whether efficiency scores are computed applying conventional or double-bootstrap DEA models. Moreover, it was found that the percentage of non-revenue water and customer density are factors influencing the efficiency of Chilean water and sewerage companies. This paper illustrates the importance of using a robust and reliable method to increase the relevance of benchmarking tools.


Water and sewerage industry Environmental variables Data envelopment analysis Efficiency Performance 


  1. Abbott M, Cohen B, Wang WC (2012) The performance of the urban water and wastewater sectors in Australia. Util Policy 20(1):52–63. CrossRefGoogle Scholar
  2. Ananda J (2014) Evaluating the performance of urban water utilities: robust nonparametric approach. J Water Resour Plan Manag 140(9):04014021. CrossRefGoogle Scholar
  3. Badin L, Daraio C, Simar L (2014) Explaining inefficiency in nonparametric production models: the state of the art. Ann Oper Res 214(1):5–30. CrossRefGoogle Scholar
  4. Benito-López B, Moreno-Enguix MDR, Solana-Ibañez J (2011) Determinants of efficiency in the provision of municipal street-cleaning and refuse collection services. Waste Manag 31(6):1099–1108. CrossRefGoogle Scholar
  5. Berg S, Marques R (2011) Quantitative studies of water and sanitation utilities: a benchmarking literature survey. Water Policy 13(5):591–606. CrossRefGoogle Scholar
  6. Boamah KB, Du J, Bediako IA, Boamah AJ, Abdul-Rasheed AA, Owusu SM (2017) Carbon dioxide emission and economic growth of China—the role of international trade. Environ Sci Pollut Res 24(14):13049–13067. CrossRefGoogle Scholar
  7. Byrnes J, Crase L, Dollery B, Villano R (2010) The relative economic efficiency of urban water utilities in regional new South Wales and Victoria. Resour Energy Econ 32(3):439–455. CrossRefGoogle Scholar
  8. Carvalho P, Marques RC (2011) The influence of the operational environment on the efficiency of water utilities. J Environ Manag 92(10):2698–2707. CrossRefGoogle Scholar
  9. Carvalho P, Marques RC (2014) Computing economies of vertical integration, economies of scope and economies of scale using partial frontier nonparametric methods. Eur J Oper Res 234(1):292–307. CrossRefGoogle Scholar
  10. Cazals C, Florens J-P, Simar L (2002) Nonparametric frontier estimation: a robust approach. J Econ 106(1):1–25. CrossRefGoogle Scholar
  11. Charnes A, Cooper WW, Rhodes E (1978) Measuring the efficiency of decision making units. Eur J Oper Res 2(6):429–444. CrossRefGoogle Scholar
  12. Cherchi C, Badruzzaman M, Oppenheimer J, Bros CM, Jacangelo JG (2015) Energy and water quality management systems for water utility's operations: a review. J Environ Manag 153:108–120. CrossRefGoogle Scholar
  13. Cooper WW, Seiford LM, Zhu J (2007) Handbook on data envelopment analysis. SpringerGoogle Scholar
  14. Corton ML, Berg SV (2009) Benchmarking central American water utilities. Util Policy 17(3–4):267–275. CrossRefGoogle Scholar
  15. Da Cruz NF, Marques RC (2014) Revisiting the determinants of local government performance. Omega (United Kingdom) 44:91–103Google Scholar
  16. Daraio C, Simar L (2006) Advanced robust and nonparametric methods in efficiency analysis: methodology and applications. Springer, New YorkGoogle Scholar
  17. De Witte K, Marques RC (2010a) Influential observations in frontier models, a robust non-oriented approach to the water sector. Ann Oper Res 181(1):377–392. CrossRefGoogle Scholar
  18. De Witte K, Marques RC (2010b) Designing performance incentives, an international benchmark study in the water sector. CEJOR 18(2):189–220. CrossRefGoogle Scholar
  19. De Witte K, Marques RC (2010c) Incorporating heterogeneity in non parametric models: a methodological comparison. International. J Oper Res 9(2):188–204. Google Scholar
  20. Guerrini A, Romano G, Campedelli B (2011) Factors affecting the performance of water utility companies, Int J Public Sect Manag 24(6):543–566.
  21. Guerrini A, Romano G, Campedelli B (2013) Economies of scale, scope, and density in the Italian water sector: a two-stage data envelopment analysis approach. Water Resour Manag 27(13):4559–4578. CrossRefGoogle Scholar
  22. Guerrini A, Romano G, Leardini C, Martini M (2015) The effects of operational and environmental variables on efficiency of Danish water and wastewater utilities. Water (Switzerland) 7(7):3263–3282Google Scholar
  23. Hastak S, Labhasetwar P, Kundley P, Gupta R (2016) Changing from intermittent to continuous water supply and its influence on service level benchmarks: a case study in the demonstration zone of Nagpur. India, Urban Water Journal. In pressGoogle Scholar
  24. Hwang S-N, Lee H-S, Zhu J (2016) Handbook of operations analytics using data envelopment analysis. Springer, DOI:
  25. Hernández-Sancho F, Molinos-Senante M, Sala-Garrido R, Del Saz-Salazar S (2012) Tariffs and efficient performance by water suppliers: an empirical approach. Water Policy 14(5):854–864. CrossRefGoogle Scholar
  26. Marques RC, Berg S, Yane S (2014) Nonparametric benchmarking of Japanese water utilities: institutional and environmental factors affecting efficiency. J Water Resour Plan Manag 140(5):562–571. CrossRefGoogle Scholar
  27. Maziotis A, Saal DS, Thanassoulis E, Molinos-Senante M (2015) Profit, productivity and price performance changes in the water and sewerage industry: an empirical application for England and Wales. Clean Techn Environ Policy 17(4):1005–1018. CrossRefGoogle Scholar
  28. Molinos-Senante M, Mocholi-Arce M, Sala-Garrido R (2016) Efficiency assessment of water and sewerage companies: a disaggregated approach accounting for service quality. Water Resour Manag 30(12):4311–4328. CrossRefGoogle Scholar
  29. Molinos-Senante M, Sala-Garrido R (2017) Decomposition of productivity growth of water and sewerage companies: an empirical approach for Chile. Water Resour Manag 31(13):4309–4321. CrossRefGoogle Scholar
  30. Molinos-Senante M, Sala-Garrido R (2016) Performance of fully private and concessionary water and sewerage companies: a metafrontier approach. Environ Sci Pollut Res 23(12):11620–11629. CrossRefGoogle Scholar
  31. Molinos-Senante M, Sala-Garrido R, Lafuente M (2015) The role of environmental variables on the efficiency of water and sewerage companies: a case study of Chile. Environ Sci Pollut Res 22(13):10242–10253. CrossRefGoogle Scholar
  32. Romano G, Guerrini A (2011) Measuring and comparing the efficiency of water utility companies: a data envelopment analysis approach. Util Policy 19(3):202–209. CrossRefGoogle Scholar
  33. Saal DS, Parker D, Weyman-Jones T (2007) Determining the contribution of technical change, efficiency change and scale change to productivity growth in the privatized English and welsh water and sewerage industry: 1985-2000. J Prod Anal 28(1–2):127–139. CrossRefGoogle Scholar
  34. Santos P, Amado C, Coelho ST, Leitão JP (2017) Stochastic data mining tools for pipe blockage failure prediction. Urban Water J 14(4):343–353. CrossRefGoogle Scholar
  35. See KF (2015) Exploring and analysing sources of technical efficiency in water supply services: some evidence from southeast Asian public water utilities. Water Resour Econ 9:23–44. CrossRefGoogle Scholar
  36. Simar L, Wilson PW (2007) Estimation and inference in two-stage, semi-parametric models of production processes. J Econ 136(1):31–64. CrossRefGoogle Scholar
  37. SISS (2014) Report about water and sewerage services in Chile 2014. Available from: (accessed on 20th October 2017)
  38. Worthington AC (2014) A review of frontier approaches to efficiency and productivity measurement in urban water utilities. Urban Water J 11(1):55–73. CrossRefGoogle Scholar
  39. Zhang S, Lundgren T, Zhou W (2016) Energy efficiency in Swedish industry: a firm-level data envelopment analysis. Energy Econ 55:42–51. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • María Molinos-Senante
    • 1
    • 2
    • 3
    Email author
  • Guillermo Donoso
    • 4
    • 5
  • Ramon Sala-Garrido
    • 6
  • Andrés Villegas
    • 4
  1. 1.Departamento de Ingeniería Hidráulica y AmbientalPontificia Universidad Católica de ChileSantiagoChile
  2. 2.Instituto de Estudios Urbanos y TerritorialesPontificia Universidad Católica de ChileSantiagoChile
  3. 3.Centro de Desarrollo Urbano Sustentable CONICYT/FONDAP/15110020SantiagoChile
  4. 4.Departamento de Economía AgrariaPontificia Universidad Católica de ChileSantiagoChile
  5. 5.Centro de Derecho y Gestión del AguaPontificia Universidad Católica de ChileSantiagoChile
  6. 6.Departamento de Matemáticas para la Economía y la EmpresaUniversidad de ValenciaValenciaSpain

Personalised recommendations