Advertisement

Environmental Science and Pollution Research

, Volume 26, Issue 4, pp 3196–3207 | Cite as

Environmental assessment in health care organizations

  • Isabel RomeroEmail author
  • María Carmen Carnero
Contaminated sites, waste management and green chemistry: New challenges from monitoring to remediation

Abstract

The aim of this research is to design a multi-criteria model for environmental assessment of health care organizations. This is a model which guarantees the objectivity of the results obtained, is easy to apply, and incorporates a series of criteria, and their corresponding descriptors, relevant to the internal environmental auditing processes of the hospital. Furthermore, judgments were given by three experts from the areas of health, the environment, and multi-criteria decision techniques. From the values assigned, geometric means were calculated, giving weightings for the criteria of the model. This innovative model is intended for application within a continuous improvement process. A practical case from a Spanish hospital is included at the end. Information contained in the sustainability report provided the data needed to apply the model. The example contains all the criteria previously defined in the model. The results obtained show that the best-satisfied criteria are those related to energy consumption, generation of hazardous waste, legal matters, environmental sensitivity of staff, patients and others, and the environmental management of suppliers. On the other hand, those areas returning poor results are control of atmospheric emissions, increase in consumption of renewable energies, and the logistics of waste produced. It is recommended that steps be taken to correct these deficiencies, thus leading to an acceptable increase in the sustainability of the hospital.

Keywords

Health care organization Environment Sustainability Environmental management system Environmental assessment Analytical hierarchy process Multi-criteria decision making 

Notes

Acknowledgements

This research was supported by the Junta de Comunidades de Castilla-La Mancha and the European Regional Development Fund under grant number PPII-2014-013-P.

Supplementary material

11356_2017_1016_MOESM1_ESM.docx (81 kb)
ESM 1 (DOCX 81 kb)

References

  1. Aguarón J, Moreno-Jiménez JM (2003) The geometric consistency index: approximated thresholds. Eur J Oper Res 127(1):137–145CrossRefGoogle Scholar
  2. Atehortúa F (2005) Gestión y auditoría de la calidad para organizaciones públicas: norma NTCGP 1000:2004 conforme a la Ley 872 de 2003. Universidad de Antioquia, Colombia (In Spanish)Google Scholar
  3. Bhushan N, Rai K (2004) Strategic decision making. Applying the analytic hierarchy process. Springer Science & business Media, LondonGoogle Scholar
  4. Blass AP, da Costa SE, de Lima EP, Borges LA (2017) Measuring environmental performance in hospitals: a practical approach. J Clearner Prod 142:279–289.  https://doi.org/10.1016/j.jclepro.2016.07.213 CrossRefGoogle Scholar
  5. Boj JJ, Rodríguez R, Alfaro JJ (2009) Revisión bibliográfica de la utilización de la Técnica Multicriterio AHP en el campo del capital intelectual. 3rd International Conference on Industrial Engineering and Industrial Management XIII Congreso de Ingeniería de Organización (pp. 180–188). Barcelona-Terrasa, September 2nd–4th 2009Google Scholar
  6. Bracke R, Verbeke T, Dejonckheere V (2008) What determines the decision to implement EMAS? A European firm level study. Environ Resour Econ 41(4):499–518.  https://doi.org/10.1007/s10640-008-9207-y CrossRefGoogle Scholar
  7. Brentrup F, Küsters J, Kuhlmann H, Lammel J (2004) Environmental impact assessment of agricultural production systems using the life cycle assessment methodology: I. Theoretical concept of a LCA method tailored to crop production. Eur J Agron 20(3):247–264.  https://doi.org/10.1016/S1161-0301(03)00024-8 CrossRefGoogle Scholar
  8. Buiza-Camacho G, Cerbán-Jiménez MM, González-Gaya C (2016) Evaluación de factores influyentes en un puerto inteligente con un proceso analítico jerárquico. DYNA Ing Ind 9(15):498–501.  https://doi.org/10.6036/7800 Google Scholar
  9. Carballo M, Aguayo S, González M, Esperon F, de la Torre A (2016) Environmental assessment of tetracycline’s residues detected in pig slurry and poultry manure. J Environ Prot 7(01):82–92.  https://doi.org/10.4236/jep.2016.71008 CrossRefGoogle Scholar
  10. Carnero MC (2014) Model for sustainability in health care organizations. In: Encyclopedia of business analytics and optimization. IGI Global, Hershey, pp 1550–1568Google Scholar
  11. Carnero MC (2015) Assessment of environmental sustainability in health care organizations. Sustainability 7(7):8270–8291.  https://doi.org/10.3390/su7078270 CrossRefGoogle Scholar
  12. Carnero MC (2018) Model for assessment of environmental responsibility in health care organizations. In: Khosrow-Pour (ed) Encyclopedia of information science and technology, 4th edn. IGI Global, Hershey.  https://doi.org/10.4018/978-1-5225-2255-3.ch273 Google Scholar
  13. Castro MD, Mateus R, Braganca L (2017) Development of a healthcare building sustainability assessment method—proposed structure and system of weights for the Portuguese context. J Clean Prod 148:555–570.  https://doi.org/10.1016/j.jclepro.2017.02.005 CrossRefGoogle Scholar
  14. Chowdhury S, Roy BC (2016) Rating micro finance institutions operating in India: an application of fuzzy analytical hierarchical process (FAHP). Econ Aff 61(1):107–118.  https://doi.org/10.5958/0976-4666.2016.00015.2 CrossRefGoogle Scholar
  15. Comunidad de Madrid (1999) Decreto 83/1999 de 3 de junio por el que se regulan las actividades de producción y de gestión de los residuos biosanitarios y citotóxicos en la Comunidad de Madrid. Boletín Oficial de la Comunidad de Madrid (In Spanish)Google Scholar
  16. Ding GK (2008) Sustainable construction—the role of environmental assessment tools. J Environ Manag 86(3):451–464.  https://doi.org/10.1016/j.jenvman.2006.12.025 CrossRefGoogle Scholar
  17. Eskandari M, Homaee M, Falamaki A (2016) Landfill site selection for municipal solid wastes in mountainous areas with landslide susceptibility. Environ Sci Pollut Res 23(12):12423–12434.  https://doi.org/10.1007/s11356-016-6459-x CrossRefGoogle Scholar
  18. European Union (2009) Official journal of the European Union. Regulation (EC) No 1221/2009 of the European Parliament and of the Council of 25 November 2009 on the voluntary participation by organisations in a community eco-management and audit scheme (EMAS), repealing Regulation (EC) No 761/2001 and Comision DecisiGoogle Scholar
  19. Geldermann J, Gabriel R, Rentz O (1999) Ecological assessment of the environmental impacts of the kerosene burning in jet turbines and its improvement assessment. Environ Sci Pollut Res 6(2):115–121.  https://doi.org/10.1007/BF02987564 CrossRefGoogle Scholar
  20. Geldermann J, Spengler T, Rentz O (2000) Fuzzy outranking for environmental assessment. Case study: iron and steel making industry. Fuzzy Sets Syst 115(1):45–65.  https://doi.org/10.1016/S0165-0114(99)00021-4 CrossRefGoogle Scholar
  21. Halberg N, van der Werf HM, Basset-Mens C, Dalgaard R, de Boer IJ (2005) Environmental assessment tools for the evaluation and improvement of European livestock production system. Livest Prod Sci 96(1):33–50.  https://doi.org/10.1016/j.livprodsci.2005.05.013 CrossRefGoogle Scholar
  22. Hamjinda NS, Chiemchaisri W, Watanabe T, Honda R (2015) Toxicological assessment of hospital wastewater in different treatment processes. Environ Sci Pollut Res:1–9.  https://doi.org/10.1007/s11356-015-4812-0
  23. Hammond A, Adriaanse A, Rodenburg E, Bryant D, Woodward R (1995) Environmental indicators: a systematic approach to measuring and reporting on environmental policy performance in the context of sustainable development. World Resources Institute, Washington, DCGoogle Scholar
  24. Herraz-Pascual MK, Eguigueren-García JL, Proy-Rodriguez R, Cuadrado-Rojo J (2013) New tools to support decision making in urban planning. Model of sustainability assessment of municipal action plans. Dyna 88(4):462–472.  https://doi.org/10.6036/5427 Google Scholar
  25. Herva M, Roca E (2013) Review of combined approaches and multi-criteria analysis for corporate environmental evaluation. J Clean Prod 39:355–371.  https://doi.org/10.1016/j.jclepro.2012.07.058 CrossRefGoogle Scholar
  26. Ihobe SA (2000) Guía de indicadores medioambientales para la empresa. Ing Quím 32(365):227–234 (In Spanish)Google Scholar
  27. Kern DI, Schwaickhardt R, Mohr G, Lobo EA (2013) Toxicity and genotoxicity of hospital laundry wastewaters treated with photocatalytic ozonation. Sci Total Environ 443:566–572.  https://doi.org/10.1016/j.scitotenv.2012.11.023 CrossRefGoogle Scholar
  28. Lee H, Lee K, Park JY, Min SG (2017) Korean Ministry of Environment’s web-based visual consumer product exposure and risk assessment system (COPER). Environ Sci Pollut Res 24(14):13142–13148.  https://doi.org/10.1007/s11356-017-8965-x CrossRefGoogle Scholar
  29. Linkow I, Loney D, Cormier S, Satterstrom FK, Bridges T (2009) Weight-of-evidence evaluation in environmental assessment: review of qualitative and quantitative approaches. Sci Total Environ 407(19):5199–5205.  https://doi.org/10.1016/j.scitotenv.2009.05.004 CrossRefGoogle Scholar
  30. Luna-González JP, Rodríguez-Hurtado E (2012) Extension of the possibility of use of corporate social responsibility indicators. Dyna 87(5):558–565.  https://doi.org/10.6036/4586 CrossRefGoogle Scholar
  31. Mas-Alique P, Herráez-Garrido F, Muñoz-Jiménez D (2014) Carbon footprint as competitive advantage. DYNA Energía y Sostenibilidad 3(1).  https://doi.org/10.6036/ES7289
  32. Németh J, Sebestyén V, Juzsakova T, Domokos E, Dióssy L, Le Phuoc C et al (2017) Methodology development on aquatic environmental assessment. Environ Sci Pollut Res 24(12):11126–11140.  https://doi.org/10.1007/s11356-016-7941-1 CrossRefGoogle Scholar
  33. Niemejier D, de Groot RS (2008) A conceptual framework for selecting environmental indicator set. Ecol Indic 8(1):14–25.  https://doi.org/10.1016/j.ecolind.2006.11.012 CrossRefGoogle Scholar
  34. Noman EA, Al-Gheethi AA, Rahman NN, Nagao H, Kadir MA (2016) Assessment of relevant fungal species in clinical solid wastes. Environ Sci Pollut Res 23(19):19806–19824.  https://doi.org/10.1007/s11356-016-7161-8 CrossRefGoogle Scholar
  35. Orozco KY (2009) La auditoría ambiental en el tratamiento de los desechos hospitalarios de un hospital privado. Director: Escobar JM. Universidad de San Carlos de Guatemala, Departamento de Ciencias Económicas (In Spanish)Google Scholar
  36. Pan S-Y, Lorente AM, Chiang P-C (2016) Engineering, environmental and economic performance evaluation of high-gravity carbonation process for carbon capture and utilization. Appl Energy 170:269–277.  https://doi.org/10.1016/j.apenergy.2016.02.103 CrossRefGoogle Scholar
  37. Peterson PJ, Granados Å (2002) Towards sets of hazardous waste indicators. Environ Sci Pollut Res 9(3):204–214.  https://doi.org/10.1007/BF02987490 CrossRefGoogle Scholar
  38. Pinzone M, Guerci M, Lettieri E, Redman T (2016) Progressing in the change journey towards sustainability in healthcare: the role of ‘Green’ HRM. J Clearner Prod 122:201–211.  https://doi.org/10.1016/j.jclepro.2016.02.031 CrossRefGoogle Scholar
  39. Pishgar-Komleh SH, Akram A, Keyhani A, van Zelm R (2017) Lifecycle energy use, costs, and greenhouse gas emission of broiler farms in different production system in Iran—a case study of Alborz province. Environ Sci Pollut Res 24(19):1–9.  https://doi.org/10.1007/s11356-017-9255-3 CrossRefGoogle Scholar
  40. Ravina M, Panepinto D, Zanetti MC, Genon G (2017) Environmental analysis of a potential district heating network powered by a large-scale cogeneration plant. Environ Sci Pollut Res 24(15):1–13.  https://doi.org/10.1007/s11356-017-8863-2 CrossRefGoogle Scholar
  41. Royuela MA (2001) Los sistemas de indicadores ambientales y su papel en la información e integración del medio ambiente. I Congreso de Ingeniería Civil, Territorio y Medio Ambiente, pp. 1231–1256Google Scholar
  42. Ryan-Fogarty Y, O'Regan B, Moles R (2016) Greening healthcare: systematic implementation of environmental programmes in a university teaching hospital. J Clean Prod 126:248–259.  https://doi.org/10.1016/j.jclepro.2016.03.079 CrossRefGoogle Scholar
  43. Saaty TL (1980) The analytical hierarchy process. McGraw-Hill, New YorkGoogle Scholar
  44. Saaty TL (2008) Decision making with the analytic hierarchy process. Int J Serv Sci 1(1):83–98.  https://doi.org/10.1504/IJSSci.2008.01759 Google Scholar
  45. Song Q, Wang Z, Li J (2013) Environmental performance of municipal solid waste strategies based on LCA method: a case study of Macau. J Clearner Prod 57:92–100.  https://doi.org/10.1016/j.jclepro.2013.04.042 CrossRefGoogle Scholar
  46. Triantaphyllou E, Mann SH (1995) Using the analytic hierarchy process for decision making in engineering applications: some challenges. Int J Ind Eng: Appl Pract 2:35–44Google Scholar
  47. Unger S, Landis A (2016) Assessing the environmental, human health, and economic impacts of reprocessed medical devices in a Phoenix hospital’s supply chain. J Clean Prod 112:1995–2003.  https://doi.org/10.1016/j.jclepro.2015.07.144 CrossRefGoogle Scholar
  48. Unger SR, Campion N, Bilec MM, Landis AE (2016) Evaluating quantifiable metrics for hospital green checklist. J of Clearner Prod 127:134–142.  https://doi.org/10.1016/j.jclepro.2016.03.167 CrossRefGoogle Scholar
  49. Unión Europea. (2009). Reglamento (CE) n° 1221/2009 del Parlamento Europeo y del Consejo de 25 de noviembre de 2009 relativo a la participación voluntaria de organizaciones en un sistema comunitario de gestión y auditoría medioambientales (EMAS), y por el que se derogan el Regl. Boletín oficial del estado(DOUE-L-2009-82515), 45. EspañaGoogle Scholar
  50. van der Voet E, Van Oers L, Guinée JB, de Haes HA (1999) Using SFA indicators to support environmental policy. Environ Sci Pollut Res 6(1):49–58.  https://doi.org/10.1007/BF02987121 CrossRefGoogle Scholar
  51. Wen Z-c, Ma S-h, Zheng S-l, Zhang Y, Liang Y (2016) Assessment of environmental risk for red mud storage facility in China: a case study in Shandong Province. Environ Sci Pollut Res 23(11):11193–11208.  https://doi.org/10.1007/s11356-016-6243-y CrossRefGoogle Scholar
  52. Wood LC, Wang C, Abdul-Rahman H, Abdul-Nasir NJ (2016) Green hospital design: integrating quality function deployment and end-use demands. J Clean Prod 112:903–913.  https://doi.org/10.1016/j.jclepro.2015.08.101 CrossRefGoogle Scholar
  53. Ximénez J, Zulueta A (2001) Sistemas de Gestión Medioambiental. Colex, Madrid (In Spanish)Google Scholar
  54. Xin Y (2015) Comparison of hospital medical waste generation rate based on diagnosis-related groups. J Clean Prod 100:202–207.  https://doi.org/10.1016/j.jclepro.2015.03.056 CrossRefGoogle Scholar
  55. Zimmer C, McKinley D (2008) New approaches to pollution prevention in the healthcare industry. J Clearner Prod 16(6):734–742.  https://doi.org/10.1016/j.jclepro.2007.02.014 CrossRefGoogle Scholar
  56. Zotesso JP, Cossich ES, Janeiro V, Tavares CR (2017) Treatment of hospital laundry wastewater by UV/H2O2 process. Environ Sci Pollut Res 24(7):6278–6287.  https://doi.org/10.1007/s11356-016-6860-5 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Business Administration, Technical School of Industrial EngineeringUniversity of Castilla-La ManchaCiudad RealSpain

Personalised recommendations