Advertisement

Environmental Science and Pollution Research

, Volume 25, Issue 30, pp 29943–29952 | Cite as

Essential oils of Origanum compactum and Thymus vulgaris exert a protective effect against the phytopathogen Allorhizobium vitis

  • Khaoula Habbadi
  • Thibault Meyer
  • Ludovic Vial
  • Vincent Gaillard
  • Rachid Benkirane
  • Abdellatif Benbouazza
  • Isabelle Kerzaon
  • El Hassan Achbani
  • Céline Lavire
Chemistry, Activity and Impact of Plant Biocontrol products

Abstract

Allorhizobium (Agrobacterium) vitis is a host-specific pathogenic bacterium that causes grapevine crown gall disease, affecting vine growth and production worldwide. The antibacterial activities of different aromatic plant essential oils were tested in vitro and in planta against A. vitis. Among the essential oils tested, those of Origanum compactum and Thymus vulgaris showed the most significant in vitro antibacterial activities, with a MIC of 0.156 and 0.312 mg/mL, respectively. A synergistic effect of these two essential oils (1:1) was observed and confirmed by the checkerboard test. Carvacrol (61.8%) and thymol (47.8%) are, respectively, the major compounds in the essential oils of O. compactum and T. vulgaris and they have been shown to be largely responsible for the antibacterial activities of their corresponding essential oils. Results obtained in vitro were reinforced by an in planta pathogenicity test. A mixture of O. compactum and T. vulgaris essential oils (1:1), inoculated into the injured stem of a tomato plant and a grapevine at 0.312 mg/mL as a preventive treatment, reduced both the number of plants developing gall symptoms and the size of the tumors.

Keywords

Crown gall Allorhizobium vitis Biocontrol Essential oils Origanum compactum Thymus vulgaris Agrobacterium 

Notes

Acknowledgements

The authors would like to thank David Chapulliot (UMR 5557, Ecologie Microbienne, INRA, UMR) and Laurence Loiseau (PARMIC platform of UMR 5557, Ecologie Microbienne, INRA, UMR) for their technical assistance, and Rosa Padilla (UMR 5557, Ecologie Microbienne, INRA, UMR) for reading the manuscript and providing suggestions. Plant experiments were performed with the help of Elise Lacroix at the “Serre and chambres climatiques” platform of the BioenviS Research Federation. Confocal microscopy was performed at the Technological Center of Microstructures of Lyon (CTμ), with the help of Béatrice Burdin.

Funding information

This study was supported by the PRAD 14-08 project “Biological control of Agrobacterium vitis, the causal agent of Crown gall on grapevines”, the regional center of the National Institute for Agricultural Research Meknes (INRA), the French national programme EC2CO- Biohefect/Ecodyn//Dril/MicrobiEn (IBAD).

Supplementary material

11356_2017_1008_MOESM1_ESM.pptx (8.7 mb)
ESM 1 (PPTX 8861 kb)

References

  1. Adam K, Sivropoulou A, Kokkini S, Lanaras T, Arsenakis M (1998) Antifungal activities of Origanum vulgare subsp. hirtum, Mentha spicata, Lavandula angustifolia, and Salvia fruticosa essential oils against human pathogenic fungi. J Agric Food Chem 46(5):1739–1745.  https://doi.org/10.1021/jf9708296 CrossRefGoogle Scholar
  2. Adams RP (2007) Identification of essential oil components by gas chromatograph/mass spectrometry, 4th edn. Allured Publishing Corporation, Carol StreamGoogle Scholar
  3. Ahmad A, Khan A, Akhtar F, Yousuf S, Xess I, Khan LA, Manzoor N (2011) Fungicidal activity of thymol and carvacrol by disrupting ergosterol biosynthesis and membrane integrity against Candida. Eur J Clin Microbiol Infect Dis 30(1):41–50.  https://doi.org/10.1007/s10096-010-1050-8 CrossRefGoogle Scholar
  4. Akiyoshi DE, Klee H, Amasino RM, Nester EW, Gordon MP (1984) T-DNA of Agrobacterium tumefaciens encodes an enzyme of cytokinin biosynthesis. Proc Natl Acad Sci U S A 81(19):5994–5998.  https://doi.org/10.1073/pnas.81.19.5994 CrossRefGoogle Scholar
  5. Altundag S, Aslim B, Ozturk S (2011) In vitro antimicrobial activities of essential oils from Origanum minutiflorum and Siderties erytrantha subsp. erytrantha on phytopathogenic bacteria. J Essent Oil Res 23(1):4–8.  https://doi.org/10.1080/10412905.2011.9700422 CrossRefGoogle Scholar
  6. Armijo G, Schlechter R, Agurto M, Munoz D, Nunez C, Arce-Johnson P (2016) Grapevine pathogenic microorganisms: understanding infection strategies and host response scenarios. Front Plant Sci 7:382.  https://doi.org/10.3389/fpls.2016.00382 CrossRefGoogle Scholar
  7. Badawy MEI, Abdelgaleil SAM (2013) Composition and antimicrobial activity of essential oils isolated from Egyptian plants against plant pathogenic bacteria and fungi. Ind Crop Prod 52:776–782CrossRefGoogle Scholar
  8. Bagamboula CF, Uyttendaele M, Debevere J (2004) Inhibitory effect of thyme and basil essential oils, carvacrol, thymol, estragol, linalool and p-cymene towards Shigella sonnei and S. flexneri. Food Microbiol 21(1):33–42.  https://doi.org/10.1016/S0740-0020(03)00046-7 CrossRefGoogle Scholar
  9. Bajpai KV, Cho MJ, Kang SC (2010) Control of plant pathogenic bacteria of Xanthomonas spp. by the essential oil and extracts of Metasequoia glyptostroboides Miki ex Hu in vitro and in vivo. J Phytopathol 158(7-8):479–486.  https://doi.org/10.1111/j.1439-0434.2009.01646.x CrossRefGoogle Scholar
  10. Bakkali F, Averbeck S, Averbeck D, Idaomar M (2008) Biological effects of essential oils. Food Chem Toxicol 46(2):446–475.  https://doi.org/10.1016/j.fct.2007.09.106 CrossRefGoogle Scholar
  11. Bassolé IHN, Juliani HR (2012) Essential oils in combination and their antimicrobial properties. Molecules 17(4):3989–4006.  https://doi.org/10.3390/molecules17043989 CrossRefGoogle Scholar
  12. Berenbaum MC (1978) A method for testing for synergy with number of agents. J Infect Dis 137(2):122–130.  https://doi.org/10.1093/infdis/137.2.122 CrossRefGoogle Scholar
  13. Burr TJ, Reid CL, Splittstoesser DF, Yoshimura M (1996) Effect of heat treatments on grape bud mortality and survival of Agrobacterium vitis in vitro and in dormant grape cuttings. Am J Enol Vitic 47(2):119–123Google Scholar
  14. Burr TJ, Bazzi C, Sul S, Otten L (1998) Crown gall of grape: biology of Agrobacterium vitis and the development of disease control strategies. Plant Dis 82(12):1288–1297.  https://doi.org/10.1094/PDIS.1998.82.12.1288 CrossRefGoogle Scholar
  15. Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods—a review. Int J Food Microbiol 94(3):223–253.  https://doi.org/10.1016/j.ijfoodmicro.2004.03.022 CrossRefGoogle Scholar
  16. Calvo MA, Arosemena EL, Shiva C, Adelantado C (2012) Antimicrobial activity of plant naturel extracts and essential oils. In: Mendez-Vilas A (ed) Science Against Microbial Pathogens: Communicating Current Research and Technological Advances. Formatex research center, Spain, pp 1179–1185Google Scholar
  17. Cantrell CL, Dayan FE, Duke SO (2012) Natural products as sources of new pesticides. J Nat Prod 75(6):1231–1242.  https://doi.org/10.1021/np300024u CrossRefGoogle Scholar
  18. Castilho P, Liu K, Rodrigues AI, Feio S, Tomi F, Casanova J (2007) Composition and antimicrobial activity of the essential oil of Clinopodium ascendens (Jordan) Sampaio from Madeira. Flavour Fragr J 22(2):139–144.  https://doi.org/10.1002/ffj.1771 CrossRefGoogle Scholar
  19. De Azeredo GA, Stamford TLM, Nunes PC, Neto NJG, de Oliveira MEG, de Souza EL (2011) Combined application of essential oils from Origanum vulgare L. and Rosmarinus officinalis L. to inhibit bacteria and autochthonous microflora associated with minimally processed vegetables. Food Res Int 44(5):1541–1548.  https://doi.org/10.1016/j.foodres.2011.04.012 CrossRefGoogle Scholar
  20. Dorman HJ, Deans SG (2000) Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J Appl Microbiol 88(2):308–316.  https://doi.org/10.1046/j.1365-2672.2000.00969.x CrossRefGoogle Scholar
  21. El-Zemity SR, Radwan MA, El-Mohamed SA, Sherby SM (2008) Antibacterial screening of some essential oils, monoterpenoids and novel N-methyl carbamates based on monoterpenoids against Agrobacterium tumefaciens and Erwinia carotovora. Arch Phytopathol Plant Prot 41(6):451–461.  https://doi.org/10.1080/03235400600833696 CrossRefGoogle Scholar
  22. Genov N, Liop P, Lopez MM, Bobev SG, Alvarez B (2015) Molecular and phenotypic characterization of Agrobacterium species from vineyards allows identification of typical Agrobacterium vitis and atypical biovar 2 strains. J Appl Microbiol 118(6):1465–1477.  https://doi.org/10.1111/jam.12791 CrossRefGoogle Scholar
  23. Ghanney N, Rhouma A (2015) Schinus terebinthifolius Raddi (Anacardiaceae) leaf extracts: antibacterial activity against two Agrobacterium tumefaciens strains. J Crop Prot 4(1):85–96Google Scholar
  24. Gormez A, Bozari S, Yanmis D, Gulluce M, Sahin F, Agar G (2015) Chemical composition and antibacterial activity of essential oils of two species of Lamiaceae against phytopathogenic bacteria. Pol J Microbiol 64(2):121–127Google Scholar
  25. Helander IM, Alakomi HL, Latva-Kala K, Mattila-Sandholm T, Pol I, Smid EJ, Gorris LGM, von Wright A (1998) Characterization of the action of selected essential oil components on Gram-negative bacteria. J Agric Food Chem 46(9):3590–3595.  https://doi.org/10.1021/jf980154m CrossRefGoogle Scholar
  26. Iacobellis NS, Lo Cantore P, Capasso F, Senatore F (2005) Antibacterial activity of Cuminum cyminum L. and Carum carvi L. essential oils. J Agric Food Chem 53(1):57–61.  https://doi.org/10.1021/jf0487351 CrossRefGoogle Scholar
  27. Karami-osboo R, Khodaverdi M, Aliakbari F (2010) Antibacterial effect of effective compounds of Satureja hortensis and Thymus vulgaris essential oil against Erwinia amylovora. J Agr Sci Tech 12:35–45Google Scholar
  28. Kawaguchi A (2009) Studies on the diagnosis and biological control of grapevine crown gall and phylogenetic analysis of tumorigenic Rhizobium vitis. J Gen Plant Pathol 75(6):462–463.  https://doi.org/10.1007/s10327-009-0196-7 CrossRefGoogle Scholar
  29. Kokoskowa B, Pouvova D, Pavela R (2011) Effectiveness of plant essentials oils against Erwinia amylovora, Pseudomonas syringae pv. syringae and associated saprophytic bacteria on/in host plants. J Plant Path 93(1):133–139Google Scholar
  30. Kuzmanovic N, Ivanovic M, Prokic A, Gasic K, Zlatkovic N, Obradovic A (2014) Characterization and phylogenetic diversity of Agrobacterium vitis from Serbia based on sequence analysis of 16S-23S rRNA internal transcribed spacer (ITS) region. Eur J Plant Pathol 140(4):757–768.  https://doi.org/10.1007/s10658-014-0507-5 CrossRefGoogle Scholar
  31. Lacroix B, Citovsky V (2013) Crown gall tumors. Brenner’s Enc Genet 2(2):236–239Google Scholar
  32. Lambert RJ, Skandamis PN, Coote PJ, Nychas GJ (2001) A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J Appl Microbiol 91:453–462CrossRefGoogle Scholar
  33. Martinson T, Burr TJ (2012) How close are we to crown gall-free nursery stock? Viticulture and Enology, Cornell University, College of Agriculture and Life Sciences. http://grapesandwine.cals.cornell.edu/newsletters/appellation-cornell/2012-newsletters/issue-9Google Scholar
  34. McManus PS, Stockwell VO, Sundin GW, Jones AL (2002) Antibiotic use in plant agriculture. Annu Rev Phytopathol 40(1):443–465.  https://doi.org/10.1146/annurev.phyto.40.120301.093927 CrossRefGoogle Scholar
  35. Mikicinski A, Sobiczewski P, Berczynski S (2012) Efficacy of fungicides and essential oils against bacterial diseases of fruit trees. J Plant Prot Res 52(4):467–471CrossRefGoogle Scholar
  36. Moghaddam M, Alymanesh MR, Mehdizadech L, Mirzaei H, Pirbalouti AG (2014) Chemical composition and antibacterial activity of essential oil of Ocimum ciliatum, as a new source of methyl chavicol, against ten phytopathogens. Ind Crop Prod 59:144–148.  https://doi.org/10.1016/j.indcrop.2014.05.006 CrossRefGoogle Scholar
  37. Mougel C, Cournoyer B, Nesme X (2001) Novel tellurite-amended media and specific chromosomal and Ti plasmid robes for direct analysis of population of Agrobacterium biovar 1 and 2. Appl Environ Microb 67(1):65–74.  https://doi.org/10.1128/AEM.67.1.65-74.2001 CrossRefGoogle Scholar
  38. Mousavi SA, Osterman J, Wahlberg N, Nesme X, Lavire C, Vial L, Paulin L, de Lajudie P, Lindstrom K (2014) Phylogeny of the Rhizobium-Allorhizobium-Agrobacterium clade supports the delineation of Neorhizobium gen.nov. Syst Appl Microbiol 37(3):208–215.  https://doi.org/10.1016/j.syapm.2013.12.007 CrossRefGoogle Scholar
  39. Mousavi SA, Willems A, Nesme X, de Lajudie P, Lindstrom K (2015) Revised phylogeny of rhizobiaceae: proposal of the delineation of pararhizobium gen. nov., and 13 new species combinations. Syst Appl Microbiol 38(2):84–90.  https://doi.org/10.1016/j.syapm.2014.12.003 CrossRefGoogle Scholar
  40. Nazzaro F, Fratianni F, De Martino L, Coppola R, De Feo V (2013) Effect of essential oils on pathogenic bacteria. Pharmaceuticals 6(12):1451–1474.  https://doi.org/10.3390/ph6121451 CrossRefGoogle Scholar
  41. Nostro A, Papalia T (2012) Antimicrobial activity of carvacrol: current progress and future prospectives. Recent Pat Antiinfect Drug Discov 7(1):28–35.  https://doi.org/10.2174/157489112799829684 CrossRefGoogle Scholar
  42. Ophel K, Kerr A (1990) Agrobacterium vitis sp. nov. for strains of Agrobacterium biovar 3 from grapevines. Int J Syst Bacteriol 40(3):236–241.  https://doi.org/10.1099/00207713-40-3-236 CrossRefGoogle Scholar
  43. Packiyasothy EV, Kyle S (2002) Antimicrobial properties of some herb essential oils. Food Aust 54(9):384–387Google Scholar
  44. Pei RS, Zhou F, Ji BP, Xu J (2009) Evaluation of combined antibacterial effects of eugenol, cinnamaldehyde, thymol, and carvacrol against E. coli with an improved method. J Food Sci 74:379–383CrossRefGoogle Scholar
  45. Popoff MY, Kersters K, Kiredjian M, Miras I, Coynault C (1984) Position taxonomique de souches d’Agrobacterium d’origine hospitalière. Ann Inst Pasteur Virol 135(3):427–442.  https://doi.org/10.1016/S0769-2609(84)80083-6 CrossRefGoogle Scholar
  46. Rasooli I, Rezaei MB, Allameh A (2006) Ultrastructural studies on antimicrobial efficacy of thyme essential oils on Listeria monocytogenes. Int J Infect Dis 10(3):236–241.  https://doi.org/10.1016/j.ijid.2005.05.006 CrossRefGoogle Scholar
  47. Ridé M, Ridé S, Petit A, Bollet C, Dessaux Y, Gradan L (2000) Characterization of plasmid-borne and chromosome-encoded traits of Agrobacterium biovar1, 2 and 3 strains from France. Appl Environ Microbiol 66(5):1818–1825.  https://doi.org/10.1128/AEM.66.5.1818-1825.2000 CrossRefGoogle Scholar
  48. Sawada H, Ieki H, Oyaizu H, Matsumoto S (1993) Proposal for rejection of Agrobacterium tumefaciens and revised descriptions for the genus Agrobacterium and for Agrobacterium radiobacter and Agrobacterium rhizogenes. Int J Syst Bacteriol 43(4):694–702.  https://doi.org/10.1099/00207713-43-4-694 CrossRefGoogle Scholar
  49. Sbayou H, Oubrim N, Bouchrif B, Ababou B, Boukachabi K, Amghar S (2014) Chemical composition and antibacterial activity of essential oil of Origanum compactum against foodborne bacteria. Int J Engi Res Tech 3:3562–3567Google Scholar
  50. Süle S, Burr TJ (1998) The influence of rootstocks resistance to crown gall (Agrobacterium spp.) on the susceptibility of scions in grape vine cultivars. Plant Pathol 47(1):84–88.  https://doi.org/10.1046/j.1365-3059.1998.00205.x CrossRefGoogle Scholar
  51. Szegedi E, Czako M, Otten L, Koncz CS (1988) Opines in crown gall tumors induced by biotype 3 isolates of Agrobacterium tumefaciens. Physiol Mol Plant Path 32(2):237–247.  https://doi.org/10.1016/S0885-5765(88)80020-1 CrossRefGoogle Scholar
  52. Tallarida RJ (2006) An overview of drug combination analysis with isoblograms. J Pharmacol Exp Ther 319(1):1–7.  https://doi.org/10.1124/jpet.106.104117 CrossRefGoogle Scholar
  53. Ultee A, Bennik MH, Moezelaar R (2002) The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Appl Environ Microbiol 68(4):1561–1568.  https://doi.org/10.1128/AEM.68.4.1561-1568.2002 CrossRefGoogle Scholar
  54. Van Vuuren SF, Suliman S, Viljoen AM (2009) The antimicrobial activity of four commercial essential oils in combination with conventional antimicrobials. Lett Appl Microbiol 48(4):440–446.  https://doi.org/10.1111/j.1472-765X.2008.02548.x CrossRefGoogle Scholar
  55. Zupan JR, Zambryski P (1995) Transfer of T-DNA from Agrobacterium to the plant cell. Plant Physiol 107(4):1041–1047.  https://doi.org/10.1104/pp.107.4.1041 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Khaoula Habbadi
    • 1
    • 2
    • 3
  • Thibault Meyer
    • 3
  • Ludovic Vial
    • 3
  • Vincent Gaillard
    • 3
  • Rachid Benkirane
    • 2
  • Abdellatif Benbouazza
    • 1
  • Isabelle Kerzaon
    • 3
  • El Hassan Achbani
    • 1
  • Céline Lavire
    • 3
  1. 1.Laboratoire de recherche et de protection des plantesURPP- INRA-MeknèsMeknesMorocco
  2. 2.Laboratoire de BotaniqueBiotechnologie, et Protection des Plantes, Faculté des SciencesKenitraMorocco
  3. 3.Université de Lyon, Université Lyon 1Villeurbanne CEDEXFrance

Personalised recommendations