Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Effects of low-level engineered nanoparticles on the quorum sensing of Pseudomonas aeruginosa PAO1

Abstract

The toxicity of engineered nanoparticles (ENPs) on bacteria has aroused much interest. However, few studies have focused on the effects of low-level ENPs on bacterial group behaviors that are regulated by quorum sensing (QS). Herein, we investigated the effects of nine ENPs (Ag, Fe, ZnO, TiO2, SiO2, Fe2O3, single-wall carbon nanotubes (SWCNTs), graphene oxide (GO), and C60) on QS in Pseudomonas aeruginosa PAOl. An ENP concentration of 100 μg L−1 did not impair bacterial growth. However, concentrations of 100 μg L−1 of Ag and GO ENPs induced significant increases in 3OC12–HSL in the culture and significantly promoted protease production and biofilm formation of PAO1. C4–HSL synthase and its transcription factors were less sensitive to 100 μg L−1 Ag and GO ENPs compared with 3OC12-HSL. Fe ENPs induced a significant increase in the 3OC12–HSL concentration, similar to Ag and GO ENPs. However, Fe ENPs did not induce any significant increase in protease production or biofilm formation. Different size distributions, chemical compositions, and aggregation states of the ENPs had different effects on bacterial QS. These whole circuit indicators could clarify the effects of ENPs on bacterial QS. This study furthers our understanding of the effects of low-level ENPs on bacterial social behaviors.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Abbreviations

3OC12-HSL:

N-3-oxo-dodecanoyl homoserine lactone

Ag+ :

AgNO3

Ag:

Nano-silver

AHL:

Acyl-homoserine lactone

C4-HSL:

N-butanoyl homoserine lactone

C60 :

Fullerene

ENPs:

Engineering nanoparticles

Fe:

Zero-valence nanometer iron

Fe2+ :

FeSO4

Fe2O3 :

Nano-ferric oxide

Fe3+ :

Fe2(SO4)3

GO:

Graphene oxide

LB:

Luria–Bertani

OD:

Optical density

QS:

Quorum sensing

SiO2 :

Nano-silicon dioxide

SWCNTs:

Single-wall carbon nanotubes

TiO2 :

Nano-titanium dioxide

ZnO:

Nano-zinc oxide

References

  1. Bondarenko O, Juganson K, Ivask A, Kasemets K, Mortimer M, Kahru A (2013) Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch Toxicol 87(7):1181–1200. https://doi.org/10.1007/s00204-013-1079-4

  2. Bondici VF, Khan NH, Swerhone GDW, Dynes JJ, Lawrence JR, Yergeau E, Wolfaardt GM, Warner J, Korber DR (2014) Biogeochemical activity of microbial biofilms in the water column overlying uranium mine tailings. J Appl Microbiol 117(4):1079–1094. https://doi.org/10.1111/jam.12593

  3. Bredenbruch F, Geffers R, Nimtz M, Buer J, Haussler S (2006) The Pseudomonas aeruginosa quinolone signal (PQS) has an iron-chelating activity. Environ Microbiol 8(8):1318–1329. https://doi.org/10.1111/j.1462-2920.2006.01025.x

  4. Camilli A, Bassler BL (2006) Bacterial small-molecule signaling pathways. Science 311(5764):1113–1116. https://doi.org/10.1126/science.1121357

  5. Davey ME, O'Toole GA (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64(4):847–867. https://doi.org/10.1128/MMBR.64.4.847-867.2000

  6. Edwards SJ, Kjellerup BV (2013) Applications of biofilms in bioremediation and biotransformation of persistent organic pollutants, pharmaceuticals/personal care products, and heavy metals. Appl Microbiol Biotechnol 97(23):9909–9921. https://doi.org/10.1007/s00253-013-5216-z

  7. Eom HJ, Choi J (2010) p38 MAPK activation, DNA damage, cell cycle arrest and apoptosis as mechanisms of toxicity of silver nanoparticles in Jurkat T cells. Environ Sci Technol 44(21):8337–8342. https://doi.org/10.1021/es1020668

  8. Fuqua WC, Winans SC, Greenberg EP (1994) Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 176(2):269–275. https://doi.org/10.1128/jb.176.2.269-275.1994

  9. Gholap H, Patil R, Yadav P, Banpurkar A, Ogale S, Gade W (2013) CdTe-TiO2 nanocomposite: an impeder of bacterial growth and biofilm. Nanotechnology 24(19):195101. https://doi.org/10.1088/0957-4484/24/19/195101

  10. Goodwin Jr DG, Marsh KM, Sosa IB, Payne JB, Gorham JM, Bouwer EJ, Fairbrother DH (2015) Interactions of microorganisms with polymer nanocomposite surfaces containing oxidized carbon nanotubes. Environ Sci Technol 49(9):5484–5492. https://doi.org/10.1021/acs.est.5b00084

  11. Hund-Rinke K, Simon M (2006) Ecotoxic effect of photocatalytic active nanoparticles (TiO2) on algae and daphnids. Environ Sci Pollut Res Int 13(4):225–232. https://doi.org/10.1065/espr2006.06.311

  12. Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK, Lee YS, Jeong DH, Cho M-H (2007) Antimicrobial effects of silver nanoparticles. Nanomed-Nanotechnol 3:95–101

  13. Loo CY, Rohanizadeh R, Young PM, Traini D, Cavaliere R, Whitchurch CB, Lee WH (2016) Combination of silver nanoparticles and curcumin nanoparticles for enhanced anti-biofilm activities. J Agric Food Chem 64(12):2513–2522. https://doi.org/10.1021/acs.jafc.5b04559

  14. Ma H, Williams PL, Diamond SA (2013) Ecotoxicity of manufactured ZnO nanoparticles–a review. Environ Pollut 172:76–85. https://doi.org/10.1016/j.envpol.2012.08.011

  15. Madsen JS, Burmolle M, Hansen LH, Sorensen SJ (2012) The interconnection between biofilm formation and horizontal gene transfer. FEMS Immunol Med Microbiol 65(2):183–195. https://doi.org/10.1111/j.1574-695X.2012.00960.x

  16. Maurer-Jones MA, Gunsolus IL, Murphy CJ, Haynes CL (2013) Toxicity of engineered nanoparticles in the environment. Anal Chem 85(6):3036–3049. https://doi.org/10.1021/ac303636s

  17. Miao L, Wang C, Hou J, Wang P, Ao Y, Dai S, Lv B (2015) Effects of pH and natural organic matter (NOM) on the adsorptive removal of CuO nanoparticles by periphyton. Environ Sci Pollut Res 22(10):7696–7704. https://doi.org/10.1007/s11356-014-3952-y

  18. Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55(1):165–199. https://doi.org/10.1146/annurev.micro.55.1.165

  19. Miller KP, Wang L, Chen YP, Pellechia PJ, Benicewicz BC, Decho AW (2015) Engineering nanoparticles to silence bacterial communication. Front Microbiol 6:189

  20. Mohanty A, Tan CH, Cao B (2016) Impacts of nanomaterials on bacterial quorum sensing: differential effects on different signals. Environ Sci Nano 3:351–356

  21. Monzon O, Yang Y, Yu C, Li Q, Alvarez PJJ (2015) Microbial fuel cells under extreme salinity: performance and microbial analysis. Environ Chem 12(3):293–299. https://doi.org/10.1071/EN13243

  22. Mouneyrac C, Buffet P-E, Poirier L, Zalouk-Vergnoux A, Guibbolini M, Risso-de Faverney C, Gilliland D, Berhanu D, Dybowska A, Chatel A, Perrein-Ettajni H, Pan J-F, Thomas-Guyon H, Reip P, Valsami-Jones E (2014) Fate and effects of metal-based nanoparticles in two marine invertebrates, the bivalve mollusc Scrobicularia plana and the annelid polychaete Hediste diversicolor. Environ Sci Pollut Res 21(13):7899–7912. https://doi.org/10.1007/s11356-014-2745-7

  23. Oslizlo A, Stefanic P, Dogsa I, Mandic-Mulec I (2014) Private link between signal and response in Bacillus subtilis quorum sensing. Proc Natl Acad Sci U S A 111(4):1586–1591. https://doi.org/10.1073/pnas.1316283111

  24. Papenfort K, Bassler BL (2016) Quorum sensing signal-response systems in gram-negative bacteria. Nat Rev Microbiol 14(9):576–588. https://doi.org/10.1038/nrmicro.2016.89

  25. Patriquin GM, Banin E, Gilmour C, Tuchman R, Greenberg EP, Poole K (2008) Influence of quorum sensing and iron on twitching motility and biofilm formation in Pseudomonas aeruginosa. J Bacteriol 190(2):662–671. https://doi.org/10.1128/JB.01473-07

  26. Pearson JP, Gray KM, Passador L, Tucker KD, Eberhard A, Iglewski BH, Greenberg EP (1994) Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. Proc Natl Acad Sci U S A 91(1):197–201. https://doi.org/10.1073/pnas.91.1.197

  27. Pearson JP, Passador L, Iglewski BH, Greenberg EP (1995) A second N-acylhomoserine lactone signal produced by Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 92(5):1490–1494. https://doi.org/10.1073/pnas.92.5.1490

  28. Prateeksha N, Singh BR, Shoeb M, Sharma S, Naqvi AH, Gupta VK, Singh BN (2017) Scaffold of selenium nanovectors and honey phytochemicals for inhibition of Pseudomonas aeruginosa quorum sensing and biofilm formation. Front Cell Infect Microbiol 7:93. https://doi.org/10.3389/fcimb.2017.00093

  29. Rutherford ST, van Kessel JC, Shao Y, Bassler BL (2011) Apha and luxr/hapr reciprocally control quorum sensing in vibrios. Genes Dev 25(4):397–408. https://doi.org/10.1101/gad.2015011

  30. Sajid M, Ilyas M, Basheer C, Tariq M, Daud M, Baig N, Shehzad F (2015) Impact of nanoparticles on human and environment: review of toxicity factors, exposures, control strategies, and future prospects. Environ Sci Pollut Res 22(6):4122–4143. https://doi.org/10.1007/s11356-014-3994-1

  31. Schaumann GE, Baumann T, Lang F, Metreveli G, Vogel HJ (2015) Engineered nanoparticles in soils and waters. Sci Total Environ 535:1–2. https://doi.org/10.1016/j.scitotenv.2015.06.006

  32. Shi S, Jia J, Guo XK, Zhao YP, Chen DS, Guo YY, Zhang XL (2016) Reduced Staphylococcus aureus biofilm formation in the presence of chitosan-coated iron oxide nanoparticles. Int J Nanomedicine 11:6499–6506

  33. Singh BR, Singh BN, Singh A, Khan W, Naqvi AH, Singh HB (2015) Mycofabricated biosilver nanoparticles interrupt Pseudomonas aeruginosa quorum sensing systems. Sci Rep 5:1–14

  34. Stepanovic S, Vukovic D, Dakic I, Savic B, Svabicvlahovic M (2000) A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J Microbiol Methods 40(2):175–179. https://doi.org/10.1016/S0167-7012(00)00122-6

  35. Tettmann B, Niewerth C, Kirschhoefer F, Neidig A, Doetsch A, Brenner-Weiss G, Fetzner S, Overhage J (2016) Enzyme-mediated quenching of the Pseudomonas quinolone signal (PQS) promotes biofilm formation of Pseudomonas aeruginosa by increasing iron availability. Front Microbiol 7:1–11

  36. Wang J, Koo Y, Alexander A, Yang Y, Westerhof S, Zhang Q, Schnoor JL, Colvin VL, Braam J, Alvarez PJJ (2013) Phytostimulation of poplars and arabidopsis exposed to silver nanoparticles and ag+ at sublethal concentrations. Environ Sci Technol 47(10):5442–5449. https://doi.org/10.1021/es4004334

  37. Wang Z, Zhang L, Zhao J, Xing B (2016) Environmental processes and toxicity of metallic nanoparticles in aquatic systems as affected by natural organic matter. Environ Sci Nano 3:240–255

  38. Williams P, Camara M (2009) Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. Curr Opin Microbiol 12(2):182–191. https://doi.org/10.1016/j.mib.2009.01.005

  39. Yang Y, Alvarez PJ (2015) Sublethal concentrations of silver nanoparticles stimulate biofilm development. Environ Sci Technol Lett 2(8):221–226. https://doi.org/10.1021/acs.estlett.5b00159

  40. Yang Y, Wang J, Xiu Z, Alvarez PJJ (2013) Impacts of silver nanoparticles on cellular and transcriptional activity of nitrogen-cycling bacteria. Environ Toxicol Chem 32(7):1488–1494. https://doi.org/10.1002/etc.2230

  41. Yeon KM, Cheong WS, Oh HS, Lee WN, Hwang BK, Lee CH, Beyenal H, Lewandowski Z (2009) Quorum sensing: a new biofouling control paradigm in a membrane bioreactor for advanced wastewater treatment. Environ Sci Technol 43(2):380–385. https://doi.org/10.1021/es8019275

  42. Zhang Y, Ali SF, Dervishi E, Xu Y, Li Z, Casciano D, Biris AS (2010) Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural Phaeochromocytoma-derived PC12 cells. ACS Nano 4(6):3181–3186. https://doi.org/10.1021/nn1007176

Download references

Acknowledgements

This study was supported by the National Science Foundation of China (Grant Nos. 51478432 and 31570490) and the Foundations of the Education Department of Zhejiang Province (Grant No. Y201636262). The authors thank the Ajai A Dandekar Lab, University of Washington, for providing plasmids and helpful assistance. The authors also thank Kate Fox, DPhil, from Liwen Bianji, Edanz Group China (www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript.

Author information

Correspondence to Meizhen Wang.

Additional information

Responsible editor: Diane Purchase

Electronic supplementary material

ESM 1

(DOCX 58 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, N., Wang, L., Yan, H. et al. Effects of low-level engineered nanoparticles on the quorum sensing of Pseudomonas aeruginosa PAO1. Environ Sci Pollut Res 25, 7049–7058 (2018). https://doi.org/10.1007/s11356-017-0947-5

Download citation

Keywords

  • Low-level
  • Engineered nanoparticle
  • Quorum sensing
  • Group behavior