Advertisement

Environmental Science and Pollution Research

, Volume 25, Issue 35, pp 34893–34902 | Cite as

Enhanced photocatalytic activity using GO/TiO2 catalyst for the removal of DCA solutions

  • Paula Ribao
  • Maria J. Rivero
  • Inmaculada Ortiz
Advanced oxidation processes for water/wastewater treatment

Abstract

This work aimed to optimize high-performance photocatalysts based on graphene oxide/titanium dioxide (GO/TiO2) nanocomposites for the effective degradation of aqueous pollutants. The catalytic activity was tested against the degradation of dichloroacetic acid (DCA), a by-product of disinfection processes that is present in many industrial wastewaters and effluents. GO/TiO2 photocatalysts were prepared using three different methods, hydrothermal, solvothermal, and mechanical, and varying the GO/TiO2 ratio in the range of 1 to 10%. Several techniques were applied to characterize the catalysts, and better coupling of GO and TiO2 was observed in the thermally synthesized composites. Although the results obtained for DCA degradation showed a coupled influence of the composite preparation method and its composition, promising results were obtained with the photocatalysts compared to the limited activity of conventional TiO2. In the best case, corresponding to the composite synthesized via hydrothermal method with 5% of GO/TiO2 weight ratio, an enhancement of 2.5 times of the photocatalytic degradation yield of DCA was obtained compared to bare TiO2, thus opening more efficient ways to promote the application of photocatalytic remediation technologies.

Keywords

Dichloroacetic acid Graphene oxide Titanium dioxide Photocatalytic activity Pollutants removal Advanced oxidation process 

Notes

Acknowledgments

Financial support from projects CTM2015-69845-R and CTQ2015-66078-R (MINECO/FEDER, UE) are gratefully acknowledged. Paula Ribao also thanks the University of Cantabria for a research grant. The authors wish to thank Professor Jesús Antonio González of Department CITIMAC of the University of Cantabria for assistance with Raman spectra measurements. The authors also thank the Centro Tecnológico de Componentes (CTC) for AFM images.

Supplementary material

11356_2017_901_MOESM1_ESM.docx (288 kb)
ESM 1 (DOCX 287 kb)

References

  1. Adán C, Marugán J, Obregón S, Colón G (2015) Photocatalytic activity of bismuth vanadates under UV-A and visible light irradiation: inactivation of Escherichia coli vs oxidation of methanol. Catal Today 240:93–99.  https://doi.org/10.1016/j.cattod.2014.03.059 CrossRefGoogle Scholar
  2. Bhatia V, Dhir A (2016) Transition metal doped TiO2 mediated photocatalytic degradation of anti-inflammatory drug under solar irradiations. J Environ Eng 4(1):1267–1273.  https://doi.org/10.1016/j.jece.2016.01.032 CrossRefGoogle Scholar
  3. Byrne C, Subramanian G, Pillai SC (2017) Recent advances in photocatalysis for environmental applications. J Environ Chem Eng Article in press.  https://doi.org/10.1016/j.jece.2017.07.080 CrossRefGoogle Scholar
  4. Carbajo J, García-Muñoz P, Tolosana-Moranchel A, Faraldos M, Bahamonde A (2014) Effect of water composition on the photocatalytic removal of pesticides with different TiO2 catalysts. Environ Sci Pollut Res 21(21):12233–12240.  https://doi.org/10.1007/s11356-014-3111-5 CrossRefGoogle Scholar
  5. Chatterjee D, Dasgupta S (2005) Visible light induced photocatalytic degradation of organic pollutants. J Photoch Photobio C 6(2–3):186–205.  https://doi.org/10.1016/j.jphotochemrev.2005.09.001 CrossRefGoogle Scholar
  6. Chen H, Nanayakkara CE, Grassian VH (2012) Titanium dioxide photocatalysis in atmospheric chemistry. Chem Rev 112(11):5919–5948.  https://doi.org/10.1021/cr3002092 CrossRefGoogle Scholar
  7. Chong MN, Jin B, Chow CWK, Saint C (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44(10):2997–3027.  https://doi.org/10.1016/j.watres.2010.02.039 CrossRefGoogle Scholar
  8. Comninellis C, Kapalka A, Malato S, Parsons SA, Poulios I, Mantzavinos D (2008) Advanced oxidation processes for water treatment: advances and trends for R&D. J Chem Technol Biol 83(6):769–776.  https://doi.org/10.1002/jctb.1873 CrossRefGoogle Scholar
  9. Cruz M, Gomez C, Duran-Valle CJ, Pastrana-Martínez LM, Faria JL, Silva AMT, Faraldos M, Bahamonde A (2017) Bare TiO2 and graphene oxide TiO2 photocatalysts on the degradation of selected pesticides and influence of the water matrix. Appl Surf Sci 416:1013–1021.  https://doi.org/10.1016/j.apsusc.2015.09.268 CrossRefGoogle Scholar
  10. Fernández-Castro P, Vallejo M, San Román MF, Ortiz I (2015) Insight on the fundamentals of advanced oxidation processes. Role and review of the determination methods of reactive oxygen species. J Chem Technol Biot 90(5):796–820.  https://doi.org/10.1002/jctb.4634 CrossRefGoogle Scholar
  11. Friedman D, Mendive C, Bahneman D (2010) TiO2 for water treatment: parameters affecting the kinetics and mechanisms of photocatalysis. Appl Catal B-Environ 99(3–4):398–406.  https://doi.org/10.1016/j.apcatb.2010.05.014 CrossRefGoogle Scholar
  12. Hummer WS, Hoffeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 8(6):1339.  https://doi.org/10.1021/ja01539a017 CrossRefGoogle Scholar
  13. Janani S, Sudha Rani KS, Ellappan P, Miranda LR (2016) Photodegradation of methylene blue using magnetically reduced graphene oxide bismuth oxybromide composite. J Environ Chem Eng 4(1):534–541.  https://doi.org/10.1016/j.jece.2015.10.043 CrossRefGoogle Scholar
  14. Jiang X, Nisar J, Pathak B, Zhao J, Ahija R (2013) Graphene oxide as a chemically tunable 2-D material for visible-light photocatalyst applications. J Catal 299:204–209.  https://doi.org/10.1016/j.jcat.2012.12.022 CrossRefGoogle Scholar
  15. Krishnamoorthy K, Mohan R, Kim SL (2011) Graphene oxide as a photocatalytic material. Appl Phys Lett 98(24):244101.  https://doi.org/10.1063/1.3599453 CrossRefGoogle Scholar
  16. Kumar SG, Devi LG (2011) Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. J Phys Chem A 115(46):13211–13241.  https://doi.org/10.1021/jp204364a CrossRefGoogle Scholar
  17. Lambert TN, Chavez CA, Hernandez-Sanchez B, Lu P, Bell NS, Ambrosino A, Friedman T, Boyle TJ, Wheeler DR, Huber DL (2009) Synthesis and characterization of titania-graphene nanocomposites. J Phys Chem 113(46):19812–19823.  https://doi.org/10.1021/jp905456f CrossRefGoogle Scholar
  18. Leary R, Westwood A (2011) Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis. Carbon 49(3):741–772.  https://doi.org/10.1016/j.carbon.2010.10.010 CrossRefGoogle Scholar
  19. Lee JK, You KH, Park CB (2012) Highly photoactive, low bandgap TiO2 nanoparticles wrapped by graphene. Adv Mater 24(8):1084–1088.  https://doi.org/10.1002/adma.201104110 CrossRefGoogle Scholar
  20. Lee SY, Park SJ (2013) TiO2 photocatalyst for water treatment applications. J Ind Eng Chem 19(6):1761–1769.  https://doi.org/10.1016/j.jiec.2013.07.012 CrossRefGoogle Scholar
  21. Li J, Zhou SL, Hong G-B, Chang C-T (2013) Hydrothermal preparation of P25-graphene composite with enhanced adsorption and photocatalytic degradation of dyes. Chem Eng J 219:486–491.  https://doi.org/10.1016/j.cej.2013.01.031 CrossRefGoogle Scholar
  22. Liu L, Bai H, Liu J, Sun DD (2013) Multifunctional graphene oxide-TiO2-Ag nanocomposites for high performance water disinfection and decontamination under solar irradiation. J Hazard Mater 261:214–223.  https://doi.org/10.1016/j.jhazmat.2013.07.034 CrossRefGoogle Scholar
  23. Liang D, Cui C, Hu H, Wang Y, Xu S, Ying B, Li P, Lu B, Shen H (2014) One-step hydrothermal synthesis of anatase TiO2/reduced graphene oxide nanocomposites with enhanced photocatalytic activity. J Alloys Compd 582:236–240.  https://doi.org/10.1016/j.jallcom.2013.08.062 CrossRefGoogle Scholar
  24. Lovato ME, Martín CA, Cassano AE (2011) A reaction–reactor model for O3 and UVC radiation degradation of dichloroacetic acid: the kinetics of three parallel reactions. Chem Eng J 171(2):474–489.  https://doi.org/10.1016/j.cej.2011.04.008 CrossRefGoogle Scholar
  25. Marugán J, Aguado J, Gernjak W, Malato S (2007) Solar photocatalytic degradation of dichloroacetic acid with silica-supported titania at pilot-plant scale. Catal Today 129(1–2):56–68.  https://doi.org/10.1016/j.cattod.2007.06.054 CrossRefGoogle Scholar
  26. Mendiola-Alvarez SY, Guzmán-Mar JL, Turnes-Palomino G, Maya-Alejandro F, Hernández-Ramírez A, Hinojosa-Reyes L (2017) UV and visible activation of Cr(III)-doped TiO2 catalyst prepared by a microwave-assisted sol-gel method during MCPA degradation. Environ Sci Pollut Res 24(14):12673–12682.  https://doi.org/10.1007/s11356-016-8034-x CrossRefGoogle Scholar
  27. Morales-Torres S, Pastrana-Martínez LM, Figueiredo JL, Faria JL (2013) Graphene oxide-P25 photocatalysts for degradation of diphenhydramine pharmaceutical and methyl orange dye. Appl Surf Sci 275:361–368.  https://doi.org/10.1016/j.apsusc.2012.11.157 CrossRefGoogle Scholar
  28. Morales-Torres S, Pastrana-Martínez LM, Figueiredo JL, Faria JL, Silva AMT (2012) Design of graphene-based TiO2 photocatalysts—a review. Environ Sci Pollut Res 19(9):3676–3687.  https://doi.org/10.1007/s11356-012-0939-4 CrossRefGoogle Scholar
  29. Moreira J, Serrano B, Ortiz A, de Lasa H (2012) A unified kinetic model for phenol photocatalytic degradation over TiO2 photocatalysts. Chem Eng Sci 78:186–203.  https://doi.org/10.1016/j.ces.2012.04.033 CrossRefGoogle Scholar
  30. Nakata K, Fujishima A (2012) TiO2 photocatalysis: design and applications. J Photoch Photobio C 13(3):169–189.  https://doi.org/10.1016/j.jphotochemrev.2012.06.001 CrossRefGoogle Scholar
  31. Ni Y, Wang W, Huang W, Lu C, Xu Z (2014) Graphene strongly wrapped TiO2 for high-reactive photocatalyst: a new sight for significant application of graphene. J Colloid Interface Sci 428:162–169.  https://doi.org/10.1016/j.jcis.2014.04.022 CrossRefGoogle Scholar
  32. Ortiz I, Mosquera A, Lema J, Esplugas S (2015) Advanced technologies for water treatment and reuse. AICHE J 61(10):3146–3158.  https://doi.org/10.1002/aic.15013 CrossRefGoogle Scholar
  33. Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlope PSM, Hamilton JWJ, Byrne JA, O’Shea K, Entezari MH, Dionysiou DD (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B-Environ 125:331–349.  https://doi.org/10.1016/j.apcatb.2012.05.036 CrossRefGoogle Scholar
  34. Ribao P, Rivero MJ, Ortiz I (2017) TiO2 structures doped with noble metals and/or graphene oxide to improve the photocatalytic degradation of dichloroacetic acid. Environ Sci Pollut Res 24(14):12628–12637.  https://doi.org/10.1007/s11356-016-7714-x CrossRefGoogle Scholar
  35. Rodríguez-Chueca J, Ferreira LC, Fernandes JR, Tavares PB, Lucas MS, Peres JA (2015) Photocatalytic discolouration of Reactive Black 5 by UV-A LEDs and solar radiation. J Environ Chem Eng 3(4):2948–2956.  https://doi.org/10.1016/j.jece.2015.10.019 CrossRefGoogle Scholar
  36. Stankovich A, Dikin AA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7):1558–1565.  https://doi.org/10.1016/j.carbon.2007.02.034 CrossRefGoogle Scholar
  37. Szabó T, Veres A, Cho E, Khim J, Varga N, Dekany I (2013) Photocatalyst separation from aqueous dispersion using graphene oxide/TiO2 nanocomposites. Colloid Surface A 433:230–239.  https://doi.org/10.1016/j.colsurfa.2013.04.063 CrossRefGoogle Scholar
  38. Wang D, Li X, Chen J, Tao X (2012) Enhanced photoelectrocatalytic activity of reduced graphene oxide/TiO2 composite films for dye degradation. Chem Eng J 198-199:547–554.  https://doi.org/10.1016/j.cej.2012.04.062 CrossRefGoogle Scholar
  39. Wang P, Wang J, Wang X, Yu H, Yu J, Lei M, Wang Y (2013) One-step synthesis of easy-recycling TiO2-rGO nanocomposite photocatalysts with enhanced photocatalytic activity. App Catal B-Environ 132-133:452–459.  https://doi.org/10.1016/j.apcatb.2012.12.009 CrossRefGoogle Scholar
  40. Wang Y, Shi R, Lin J, Zhu Y (2010) Significant photocatalytic enhancement in methylene blue degradation of TiO2 photocatalysts via graphene-like carbon in situ hybridization. App Catal B-Environ 100(1–2):179–183.  https://doi.org/10.1016/j.apcatb.2010.07.028 CrossRefGoogle Scholar
  41. Wen J, Li X, Liu W, Fang Y, Xie J, Xu Y (2015) Photocatalysis fundamentals and surface modification of TiO2 nanomaterials. Chin J Catal 36(12):2049–2070.  https://doi.org/10.1016/S1872-2067(15)60999-8 CrossRefGoogle Scholar
  42. Wojtoniszak M, Zielinska B, Chen X, Kalenczuk RJ, Borowiak-Palen E (2012) Synthesis and photocatalytic performance of TiO2 nanospheres-graphene nanocomposite under visible and UV light irradiation. J Mater Sci 47(7):3185–3190.  https://doi.org/10.1007/s10853-011-6153-9 CrossRefGoogle Scholar
  43. Xu X, Xu Y, Zhu J (2014) Photocatalytic antifouling graphene oxide-mediated hierarchical filtration membranes with potential applications on water purification. ACS Appl Mater Interfaces 6(18):16117–16123.  https://doi.org/10.1021/am5040945 CrossRefGoogle Scholar
  44. Zalazar CS, Lovato ME, Labas MD, Brandi RJ, Cassano AE (2007) Intrinsic kinetics of the oxidative reaction of dichloroacetic acid employing hydrogen peroxide and ultraviolet radiation. Chem Eng Sci 62(21):5840–5853.  https://doi.org/10.1016/j.ces.2007.06.023 CrossRefGoogle Scholar
  45. Zhang Z, Yang W, Zou Z, Xu F, Wang X, Zhang B, Tang J (2012) One-pot, solvothermal synthesis of TiO2-graphene composite nanosheets. J Colloid Interface Sci 386(1):198–204.  https://doi.org/10.1016/j.jcis.2012.07.068 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Paula Ribao
    • 1
  • Maria J. Rivero
    • 1
  • Inmaculada Ortiz
    • 1
  1. 1.Department of Chemical and Biomolecular Engineering, ETSIITUniversity of CantabriaSantanderSpain

Personalised recommendations