Environmental Science and Pollution Research

, Volume 25, Issue 4, pp 3233–3242 | Cite as

Effects of exposure to malathion on blood glucose concentration: a meta-analysis

  • Marco Antonio Ramirez-Vargas
  • Eugenia Flores-Alfaro
  • Mayrut Uriostegui-Acosta
  • Patricia Alvarez-Fitz
  • Isela Parra-Rojas
  • Ma. Elena Moreno-GodinezEmail author
Review Article


Exposure to malathion (an organophosphate pesticide widely used around the world) has been associated with alterations in blood glucose concentration in animal models. However, the results are inconsistent. The aim of this meta-analysis was to evaluate whether malathion exposure can disturb the concentrations of blood glucose in exposed rats. We performed a literature search of online databases including PubMed, EBSCO, and Google Scholar and reviewed original articles that analyzed the relation between malathion exposure and glucose levels in animal models. The selection of articles was based on inclusion and exclusion criteria. The database search identified thirty-five possible articles, but only eight fulfilled our inclusion criteria, and these studies were included in the meta-analysis. The effect of malathion on blood glucose concentration showed a non-monotonic dose-response curve. In addition, pooled analysis showed that blood glucose concentrations were 3.3-fold higher in exposed rats than in the control group (95% CI, 2–5; Z = 3.9; p < 0.0001) in a random-effect model. This result suggested that alteration of glucose homeostasis is a possible mechanism of toxicity associated with exposure to malathion.


Malathion Organophosphate pesticides Hyperglycemia Animal models 



The authors thank MBS. Teresa Domínguez Reyes for her technical assistance and data collection. This work was partially supported by Red Temática de Toxicología de Plaguicidas (CONACYT-253789/271775). RVMA was a recipient of a scholarship from CONACYT-Mexico (#276990).


  1. Abdollahi M, Donyavi M, Pournourmohammadi S, Saadat M (2004) Hyperglycemia associated with increased hepatic glycogen phosphorylase and phosphoenolpyruvate carboxykinase in rats following subchronic exposure to malathion. Comp Biochem Physiol Part C Toxicol Pharmacol 137(4):343–347. CrossRefGoogle Scholar
  2. Acker CI, Nogueira CW (2012) Chlorpyrifos acute exposure induces hyperglycemia and hyperlipidemia in rats. Chemosphere 89(5):602–608. CrossRefGoogle Scholar
  3. Anuradha R, Saraswati M, Kumar KG, Rani SH (2014) Apoptosis of beta cells in diabetes mellitus. DNA Cell Biol 33(11):743–748. CrossRefGoogle Scholar
  4. Arsenault AL, Gibson MA, Mader ME (1975) Hypoglycemia in malathion-treated chick embryos. Can J Zool 53(8):1055–1057. CrossRefGoogle Scholar
  5. Barclay AW, Petocz P, McMillan-Price J, Flood VM, Prvan T, Mitchell P, Brand-Miller JC (2008) Glycemic index, glycemic load, and chronic disease risk—a meta-analysis of observational studies. Am J Clin Nutr 87(3):627–637Google Scholar
  6. Basiri S, Esmaily H, Vosough-Ghanbari S, Mohammadirad A, Yasa N, Abdollahi M (2007) Improvement by Satureja khuzestanica essential oil of malathion-induced red blood cells acetylcholinesterase inhibition and altered hepatic mitochondrial glycogen phosphorylase and phosphoenolpyruvate carboxykinase activities. Pestic Biochem Physiol 89(2):124–129. CrossRefGoogle Scholar
  7. Biarnés M, Montolio M, Nacher V et al (2002) β-cell death and mass in syngeneically transplanted islets exposed to short- and long-term hyperglycemia. Diabetes 51(1):66–72. CrossRefGoogle Scholar
  8. Bissell DM, Gores GJ, Laskin DL, Hoofnagle JH (2001) Drug-induced liver injury: mechanisms and test systems. Hepatol Baltim Md 33(4):1009–1013. CrossRefGoogle Scholar
  9. Brealey D, Singer M (2009) Hyperglycemia in critical illness: a review. J Diabetes Sci Technol 3(6):1250–1260. CrossRefGoogle Scholar
  10. Chowdhury JS, Dudeja PK, Mehta SK, Mahmood A (1980) Effect of a single oral dose of malathion on D-glucose and glycine uptake and on brush border enzymes in rat intestine. Toxicol Lett 6(6):411–415. CrossRefGoogle Scholar
  11. Fakhri-Bafghi MS, Ghasemi-Niri SF, Mostafalou S et al (2016) Protective effect of selenium-based medicines on toxicity of three common organophosphorus compounds in human erythrocytes in vitro. Cell J Yakhteh 17:740–747Google Scholar
  12. Flehi-Slim I, Chargui I, Boughattas S, el Mabrouk A, Belaïd-Nouira Y, Neffati F, Najjar MF, Haouas Z, Cheikh HB (2015) Malathion-induced hepatotoxicity in male Wistar rats: biochemical and histopathological studies. Environ Sci Pollut Res 22(22):17828–17838. CrossRefGoogle Scholar
  13. García-Ruiz C, Baulies A, Mari M, García-Rovés PM, Fernandez-Checa JC (2013) Mitochondrial dysfunction in non-alcoholic fatty liver disease and insulin resistance: cause or consequence? Free Radic Res 47(11):854–868. CrossRefGoogle Scholar
  14. Ghafour-Rashidi Z, Dermenaki-Farahani E, Aliahmadi A, Esmaily H, Mohammadirad A, Ostad SN, Abdollahi M (2007) Protection by cAMP and cGMP phosphodiesterase inhibitors of diazinon-induced hyperglycemia and oxidative/nitrosative stress in rat Langerhans islets cells: molecular evidence for involvement of non-cholinergic mechanisms. Pestic Biochem Physiol 87(3):261–270. CrossRefGoogle Scholar
  15. Gould WW (1993) Linear splines and piecewise linear functions. Stata Tech Bull 15:13–17Google Scholar
  16. Gupta PK (1974) Malathion induced biochemical changes in rats. Acta Pharmacol Toxicol (Copenh) 35(3):191–194. CrossRefGoogle Scholar
  17. Harbord RM, Higgins JP (2008) Meta-regression in Stata. Meta 8:493–519Google Scholar
  18. Hooijmans CR, IntHout J, Ritskes-Hoitinga M, Rovers MM (2014a) Meta-analyses of animal studies: an introduction of a valuable instrument to further improve healthcare. ILAR J 55(3):418–426. CrossRefGoogle Scholar
  19. Hooijmans CR, Rovers MM, de Vries RB et al (2014b) SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol 14(1):43. CrossRefGoogle Scholar
  20. Howell GE, Mulligan C, Young D, Kondakala S (2016) Exposure to chlorpyrifos increases neutral lipid accumulation with accompanying increased de novo lipogenesis and decreased triglyceride secretion in McArdle-RH7777 hepatoma cells. Toxicol Vitro Int J Publ Assoc BIBRA 32:181–189. CrossRefGoogle Scholar
  21. Ismail SM (2013) Protective effects of vitamin C against biochemical toxicity induced by malathion pesticides in male albino rat. J Evol Biol Res 5:1–5CrossRefGoogle Scholar
  22. Johri R, Dayal V, Johri PK (2013) In vivo effect of selected synthetic vegetable pesticides (malathion, chlorpyrifos and cypermethrin) with special reference to hematological and biochemical parameters of albino rat. J Exp Zool India 16:65–79Google Scholar
  23. Joshi AKR, Rajini PS (2009) Reversible hyperglycemia in rats following acute exposure to acephate, an organophosphorus insecticide: role of gluconeogenesis. Toxicology 257(1-2):40–45. CrossRefGoogle Scholar
  24. Joshi AKR, Rajini PS (2012) Hyperglycemic and stressogenic effects of monocrotophos in rats: evidence for the involvement of acetylcholinesterase inhibition. Exp Toxicol Pathol 64(1-2):115–120. CrossRefGoogle Scholar
  25. Karami-Mohajeri S, Abdollahi M (2011) Toxic influence of organophosphate, carbamate, and organochlorine pesticides on cellular metabolism of lipids, proteins, and carbohydrates: a systematic review. Hum Exp Toxicol 30(9):1119–1140. CrossRefGoogle Scholar
  26. Karami-Mohajeri S, Hadian MR, Fouladdel S, Azizi E, Ghahramani MH, Hosseini R, Abdollahi M (2014) Mechanisms of muscular electrophysiological and mitochondrial dysfunction following exposure to malathion, an organophosphorus pesticide. Hum Exp Toxicol 33(3):251–263. CrossRefGoogle Scholar
  27. Lasram MM, Annabi AB, Rezg R, Elj N, Slimen S, Kamoun A, El-Fazaa S, Gharbi N (2008) Effect of short-time malathion administration on glucose homeostasis in Wistar rat. Pestic Biochem Physiol 92(3):114–119. CrossRefGoogle Scholar
  28. Lasram MM, Dhouib IB, Annabi A, El Fazaa S, Gharbi N (2014a) A review on the molecular mechanisms involved in insulin resistance induced by organophosphorus pesticides. Toxicology 322:1–13. CrossRefGoogle Scholar
  29. Lasram MM, Dhouib IB, Bouzid K, Lamine AJ, Annabi A, Belhadjhmida N, Ahmed MB, Fazaa SE, Abdelmoula J, Gharbi N (2014b) Association of inflammatory response and oxidative injury in the pathogenesis of liver steatosis and insulin resistance following subchronic exposure to malathion in rats. Environ Toxicol Pharmacol 38(2):542–553. CrossRefGoogle Scholar
  30. Lasram MM, Bouzid K, Douib IB, Annabi A, El Elj N, El Fazaa S, Abdelmoula J, Gharbi N (2015a) Lipid metabolism disturbances contribute to insulin resistance and decrease insulin sensitivity by malathion exposure in Wistar rat. Drug Chem Toxicol 38(2):227–234. CrossRefGoogle Scholar
  31. Lasram MM, El-Golli N, Lamine AJ, Douib IB, Bouzid K, Annabi A, El Fazaa S, Abdelmoula J, Gharbi N (2015b) Changes in glucose metabolism and reversion of genes expression in the liver of insulin-resistant rats exposed to malathion. The protective effects of N-acetylcysteine. Gen Comp Endocrinol 215:88–97. CrossRefGoogle Scholar
  32. Lassiter TL, Ryde IT, MacKillop EA, Brown KK, Levin ED, Seidler FJ, Slotkin TA (2008) Exposure of neonatal rats to parathion elicits sex-selective reprogramming of metabolism and alters the response to a high-fat diet in adulthood. Environ Health Perspect 116(11):1456–1462. CrossRefGoogle Scholar
  33. Lee YH, Giraud J, Davis RJ, White MF (2003) c-Jun N-terminal kinase (JNK) mediates feedback inhibition of the insulin signaling cascade. J Biol Chem 278(5):2896–2902. CrossRefGoogle Scholar
  34. Levitan EB, Song Y, Ford ES, Liu S (2004) Is nondiabetic hyperglycemia a risk factor for cardiovascular disease?: a meta-analysis of prospective studies. Arch Intern Med 164(19):2147–2155. CrossRefGoogle Scholar
  35. Li L, Messina JL (2009) Acute insulin resistance following injury. Trends Endocrinol Metab TEM 20(9):429–435. CrossRefGoogle Scholar
  36. Liberati A, Altman DG, Tetzlaff J, et al (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Ann Intern Med 151:W–65Google Scholar
  37. Matin MA, Husain K (1987) Cerebral glycogenolysis and glycolysis in malathion-treated hyperglycaemic animals. Biochem Pharmacol 36(11):1815–1817. CrossRefGoogle Scholar
  38. Matin MA, Siddiqui RA (1982) Effect of diacetylmonoxime and atropine on malathion-induced changes in blood glucose level and glycogen content of certain brain structures of rats. Biochem Pharmacol 31(9):1801–1803. CrossRefGoogle Scholar
  39. Mittra S, Bansal VS, Bhatnagar PK (2008) From a glucocentric to a lipocentric approach towards metabolic syndrome. Drug Discov Today 13(5-6):211–218. CrossRefGoogle Scholar
  40. Mostafalou S (2016) Persistent organic pollutants and concern over the link with insulin resistance related metabolic diseases. Rev Environ Contam Toxicol 238:69–89. Google Scholar
  41. Mostafalou S, Abdollahi M (2016) Pesticides: an update of human exposure and toxicity. Arch Toxicol 91(2):1–51. Google Scholar
  42. Mostafalou S, Eghbal MA, Nili-Ahmadabadi A, Baeeri M, Abdollahi M (2012) Biochemical evidence on the potential role of organophosphates in hepatic glucose metabolism toward insulin resistance through inflammatory signaling and free radical pathways. Toxicol Ind Health 28(9):840–851. CrossRefGoogle Scholar
  43. Namba T (1971) Cholinesterase inhibition by organophosphorus compounds and its clinical effects. Bull World Health Organ 44(1-3):289–307Google Scholar
  44. Nebert DW (2005) Inter-individual susceptibility to environmental toxicants—a current assessment. Toxicol Appl Pharmacol 207(2):34–42. CrossRefGoogle Scholar
  45. Nili-Ahmadabadi A, Pourkhalili N, Fouladdel S, Pakzad M, Mostafalou S, Hassani S, Baeeri M, Azizi E, Ostad SN, Hosseini R, Sharifzadeh M, Abdollahi M (2013) On the biochemical and molecular mechanisms by which malathion induces dysfunction in pancreatic islets in vivo and in vitro. Pestic Biochem Physiol 106(1-2):51–60. CrossRefGoogle Scholar
  46. Panahi P, Vosough-Ghanbari S, Pournourmohammadi S, Ostad SN, Nikfar S, Minaie B, Abdollahi M (2006) Stimulatory effects of malathion on the key enzymes activities of insulin secretion in Langerhans islets, glutamate dehydrogenase and glucokinase. Toxicol Mech Methods 16(4):161–167. CrossRefGoogle Scholar
  47. Petersen KF, Shulman GI (2006) Etiology of insulin resistance. Am J Med 119(5):S10–S16. CrossRefGoogle Scholar
  48. Pournourmohammadi S, Farzami B, Ostad SN, Azizi E, Abdollahi M (2005) Effects of malathion subchronic exposure on rat skeletal muscle glucose metabolism. Environ Toxicol Pharmacol 19(1):191–196. CrossRefGoogle Scholar
  49. Raafat N, Abass MA, Salem HM (2012) Malathion exposure and insulin resistance among a group of farmers in Al-Sharkia governorate. Clin Biochem 45(18):1591–1595. CrossRefGoogle Scholar
  50. Rahimi R, Abdollahi M (2007) A review on the mechanisms involved in hyperglycemia induced by organophosphorus pesticides. Pestic Biochem Physiol 88(2):115–121. CrossRefGoogle Scholar
  51. Ramu A, Korner M (1975) Evidence of central influences on blood glucose level: malathion hyperglycemia. Eur J Pharmacol 32(1):120–123. CrossRefGoogle Scholar
  52. Rezg R, Mornagui B, El-Arbi M, Kamoun A, El-Fazaa S, Gharbi N (2006) Effect of subchronic exposure to malathion on glycogen phosphorylase and hexokinase activities in rat liver using native PAGE. Toxicology 223(1-2):9–14. CrossRefGoogle Scholar
  53. Rezg R, Mornagui B, Kamoun A, El-Fazaa S, Gharbi N (2007) Effect of subchronic exposure to malathion on metabolic parameters in the rat. C R Biol 330(2):143–147. CrossRefGoogle Scholar
  54. Rezg R, Mornagui B, El-Fazaa S, Gharbi N (2010) Organophosphorus pesticides as food chain contaminants and type 2 diabetes: a review. Trends Food Sci Technol 21(7):345–357. CrossRefGoogle Scholar
  55. Rodrigues MA, Puga FR, Chenker E, Mazanti MT (1986) Short-term effect of malathion on rats’ blood glucose and on glucose utilization by mammalian cells in vitro. Ecotoxicol Environ Saf 12(2):110–113. CrossRefGoogle Scholar
  56. Romero-Navarro G, Lopez-Aceves T, Rojas-Ochoa A, Mejia CF (2006) Effect of dichlorvos on hepatic and pancreatic glucokinase activity and gene expression, and on insulin mRNA levels. Life Sci 78(9):1015–1020. CrossRefGoogle Scholar
  57. Ruckmani A, Nayar PG, Konda VGR, Madhusudha N, Madhavi E, Chokkaling M, Meti V, Sundaraval S (2011) Effects of inhalational exposure of malathion on blood glucose and antioxidants level in Wistar albino rats. Res J Environ Toxicol 5(5):309–315. CrossRefGoogle Scholar
  58. Sodhi S, Sharma A, Brar APS, Brar RS (2008) Effect of α tocopherol and selenium on antioxidant status, lipid peroxidation and hepatopathy induced by malathion in chicks. Pestic Biochem Physiol 90(2):82–86. CrossRefGoogle Scholar
  59. Stead LG, Gilmore RM, Bellolio MF, Mishra S, Bhagra A, Vaidyanathan L, Decker WW, Brown RD Jr (2009) Hyperglycemia as an independent predictor of worse outcome in non-diabetic patients presenting with acute ischemic stroke. Neurocrit Care 10(2):181–186. CrossRefGoogle Scholar
  60. Sterne JA, Bradburn MJ, Egger M (2008) Meta-analysis in Stata™. Syst Rev Health Care Meta-Anal Context Second Ed 347–369Google Scholar
  61. Tarantino G, Caputi A (2011) JNKs, insulin resistance and inflammation: a possible link between NAFLD and coronary artery disease. World J Gastroenterol 17(33):3785–3794. CrossRefGoogle Scholar
  62. Teimouri F, Amirkabirian N, Esmaily H, Mohammadirad A, Aliahmadi A, Abdollahi M (2006) Alteration of hepatic cells glucose metabolism as a non-cholinergic detoxication mechanism in counteracting diazinon-induced oxidative stress. Hum Exp Toxicol 25(12):697–703. CrossRefGoogle Scholar
  63. Tomás E, Lin Y-S, Dagher Z et al (2002) Hyperglycemia and insulin resistance: possible mechanisms. Ann N Y Acad Sci 967(1):43–51. CrossRefGoogle Scholar
  64. Tuzcu K, Alp H, Ozgur T, Karcioglu M, Davarci I, Evliyaoglu O, Karakus A, Hakimoglu S (2014) Oral intralipid emulsion use: a novel therapeutic approach to pancreatic β-cell injury caused by malathion toxicity in rats. Drug Chem Toxicol 37(3):261–267. CrossRefGoogle Scholar
  65. Usenik A, Legiša M (2010) Evolution of allosteric citrate binding sites on 6-phosphofructo-1-kinase. PLoS One 5(11):e15447. CrossRefGoogle Scholar
  66. Vosough-Ghanbari S, Sayyar P, Pournourmohammadi S, Aliahmadi A, Ostad SN, Abdollahi M (2007) Stimulation of insulin and glucagon synthesis in rat Langerhans islets by malathion in vitro: evidence for mitochondrial interaction and involvement of subcellular non-cholinergic mechanisms. Pestic Biochem Physiol 89(2):130–136. CrossRefGoogle Scholar
  67. Wali RK, Singh R, Dudeja PK, Sarkar AK, Mahmood A (1984) Subchronic malathion treatment effects on rat intestinal functions. Bull Environ Contam Toxicol 33(1):289–294. CrossRefGoogle Scholar
  68. World Health Organization (WHO) (2010) The WHO recommended classification of pesticides by hazard and guidelines to classification 2009. World Health Organization, GenevaGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Laboratorio De Toxicología y Salud Ambiental, Facultad De Ciencias Químico BiológicasUniversidad Autónoma De GuerreroChilpancingoMexico
  2. 2.Laboratorio De Investigación En Epidemiologia Clínica y Molecular, Facultad De Ciencias Químico BiológicasUniversidad Autónoma De GuerreroChilpancingoMexico
  3. 3.Laboratorio de Inmunotoxicogenómica, Escuela Superior de Ciencias NaturalesUniversidad Autónoma De GuerreroChilpancingoMexico
  4. 4.Laboratorio De Investigación En Obesidad y Diabetes, Facultad De Ciencias Químico BiológicasUniversidad Autónoma De GuerreroChilpancingoMexico

Personalised recommendations