Advertisement

Environmental Science and Pollution Research

, Volume 25, Issue 5, pp 4105–4133 | Cite as

Metal-tolerant thermophiles: metals as electron donors and acceptors, toxicity, tolerance and industrial applications

  • Preeti Ranawat
  • Seema RawatEmail author
Review Article

Abstract

Metal-tolerant thermophiles are inhabitants of a wide range of extreme habitats like solfatara fields, hot springs, mud holes, hydrothermal vents oozing out from metal-rich ores, hypersaline pools and soil crusts enriched with metals and other elements. The ability to withstand adverse environmental conditions, like high temperature, high metal concentration and sometimes high pH in their niche, makes them an interesting subject for understanding mechanisms behind their ability to deal with multiple duress simultaneously. Metals are essential for biological systems, as they participate in biochemistries that cannot be achieved only by organic molecules. However, the excess concentration of metals can disrupt natural biogeochemical processes and can impose toxicity. Thermophiles counteract metal toxicity via their unique cell wall, metabolic factors and enzymes that carry out metal-based redox transformations, metal sequestration by metallothioneins and metallochaperones as well as metal efflux. Thermophilic metal resistance is heterogeneous at both genetic and physiology levels and may be chromosomally, plasmid or transposon encoded with one or more genes being involved. These effective response mechanisms either individually or synergistically make proliferation of thermophiles in metal-rich habitats possibly. This article presents the state of the art and future perspectives of responses of thermophiles to metals at genetic as well as physiological levels.

Keywords

Thermophiles Heavy metal tolerance Metallothioneins Metal resistance Heavy metal remediation 

References

  1. Abdelouas W, Gong W, Lutze J, Shelnutt R, Franco Moura I (2000) Using cytochrome c3 to make selenium nanowires. Chem Mater 12(6):1510–1512CrossRefGoogle Scholar
  2. Acar S, Brierley JA, Wan RY (2005) Conditions for bioleaching a covellite-bearing ore. Hydrometallurgy 77:239–246CrossRefGoogle Scholar
  3. Ackerley DF, Gonzalez CF, Park CH, Blake RII, Keyhan M, Martin A (2004) Chromate-reducing properties of soluble flavoproteins from Pseudomonas putida and Escherichia coli. Appl Environ Microbiol 70(2):873–882CrossRefGoogle Scholar
  4. Aguiar P, Beveridge TJ, Reysenbach A-L (2004) Sulfurihydrogenibium azorense, sp. nov., a thermophilic hydrogen-oxidizing microaerophile from terrestrial hot springs in the Azores. Int J Syst Evol Microbiol 54:33–39CrossRefGoogle Scholar
  5. Ahmann D, Krumholz LR, Hemond HF, Lovley DR, Morel FMM (1999) Microbial mobilization of arsenic from sediments of the Aberjona watershed. Environ Sci Technol 31:2923–2930CrossRefGoogle Scholar
  6. Aiking H, Stijnman A, van Garderen C, van Heerikhuizen H, van’t Riet J (1984) Inorganic phosphate accumulation and cadmium detoxification in Klebsiella aerogenes CTC 418 growing in continuous culture. Appl Environ Microbiol 47:374–377Google Scholar
  7. Akhtar K, Akhtar MW, Khalid AM (2007) Removal and recovery of uranium from aqueous solutions by Trichoderma harzianum. Wat Res 41:1366–1378CrossRefGoogle Scholar
  8. Alkan H, Gul-Guven R, Guven K, Erdogan S, Dogru M (2015) Biosorption of Cd2+, Cu2+ and Ni2+ ions by a thermophilic haloalkalitolerant bacterial strain (KG9) immobilized on Amberlite XAD-4. Pol J Environ Stud 24(5):1903–1910CrossRefGoogle Scholar
  9. Almeida MAN, de Franca FP (1999) Thermophilic and mesophilic bacteria in biofilms associated with corrosion in a heat exchanger. World J Microbiol Biotechnol 154:39–442Google Scholar
  10. Antonioli P, Lampis S, Chesini I, Vallini G, Rinalducci S, Zolla L, Righetti PG (2007) Stenotrophomonas maltophilia SeITE02, a new bacterial strain suitable for bioremediation of selenite-contaminated environmental matrices. Appl Environ Microbiol 73:6854–6863CrossRefGoogle Scholar
  11. Appenroth KJ (2010) Definition of “heavy metals” and their role in biological systems. In: Sherameti I, Varma A (eds) Soil heavy metals (soil biology), vol 19. Springer, Berlin, pp 19–29CrossRefGoogle Scholar
  12. Arakaki WJ, Matsunaga T (2003) A novel protein tightly bound to bacterial magnetic particles in magnetospirillum magneticum strain AMB-1. J Biol Chem 278(10):8745–8750CrossRefGoogle Scholar
  13. Asadi S, Shahni S, Ibrahim Z, Yahya A et al (2014) Isolation and characterization of metals and antibiotic resistant psychrotrophic bacteria from refrigerated spoiled food. Jurnal Teknologi 69(1):131–135CrossRefGoogle Scholar
  14. Auernik KS, Kelly RM (2008) Identification of components of electron transport chains in the extremely thermoacidophilic crenarchaeon Metallosphaera sedula through iron and sulfur compound oxidation transcriptomes. Appl Environ Microbiol 74:7723–7732CrossRefGoogle Scholar
  15. Auernik KS, Maezato Y, Blum PH, Kelly RM (2008) The genome sequence of the metal-mobilizing, extremely thermoacidophilic archaeon Metallosphaera sedula provides insights into bioleaching-associated metabolism. Appl Environ Microbiol 74:682–692CrossRefGoogle Scholar
  16. Ayangbenro AS, Babalola OO (2017) A new stratergy for heavy metal polluted environments: a review of microbial biosorbents. Int J Environ Res Public Health 14:94Google Scholar
  17. Babàk L, Šupinova P, Zichova M, Burdychova R, Vitova E (2012) Biosorption of Cu, Zn and Pb by thermophilic bacteria—effect of biomass concentration on biosorption capacity. Acta Univ Agric Silvic Mendel Brun LX(5):9–18CrossRefGoogle Scholar
  18. Baillet F, Magnin JP, Cheruy A, Ozil P (1997) Cadmium tolerance and uptake in Thiobacillus ferrooxidans biomass. Environ Technol 18:631–637CrossRefGoogle Scholar
  19. Bajpai S, Kamboj M (2016) Harmful chemicals: impact on environment. Int J Adv Res 4(5):1800–1806CrossRefGoogle Scholar
  20. Baker BJ, Banfield JF (2003) Microbial communities in acid mine drainage. FEMS Microbiol Ecol 44:139–152Google Scholar
  21. Baker-Austin C, Wright MS, Stepanauskas R, McArthur JV (2006) Co-selection of antibiotic and metal resistance. Trends Microbiol 14:176–182CrossRefGoogle Scholar
  22. Balkwill DL, Kieft TL, Tsukuda T, Kostandarithes HM, Onstott TC, Macnaughton S, Bownas J, Fredrickson JK (2004) Identification of iron-reducing Thermus strain as Thermus scotoductus. Extremophiles 8:37–44CrossRefGoogle Scholar
  23. Ballatori N (2002) Transport of toxic metals by molecular mimicry. Environmental Health Perspectives 110:689–694CrossRefGoogle Scholar
  24. Bandeiras TM, Refojo PN, Todorovic S, Murgida DH, Hildebrandt P, Bauer C, Pereira MM, Kletzin A, Teixeira M (2009) The cytochrome ba complex from the thermoacidophilic crenarchaeote Acidianus ambivalens is an analog of bc(1) complexes. Biochim Biophys Acta 1787:37–45CrossRefGoogle Scholar
  25. Bao P, Xu XW et al (2016) Characterization and potential applications of a selenium nanoparticle producing and nitrate reducing bacterium Bacillus oryziterrae sp. nov. Scientific Reports 6:34054Google Scholar
  26. Barkay T, Wagner-Dobler I (2005) Microbial transformations of mercury: potentials, challenges, and achievements in controlling mercury toxicity in the environment. Adv Appl Microbiol 57:1–52CrossRefGoogle Scholar
  27. Barkay T, Miller SM, Summers AO (2003) Bacterial mercury resistance from atoms to interactions of bacteria with metals ecosystems. FEMS Microbiol Rev 27:355–384Google Scholar
  28. Barkay T, Kritee K, Boyd E, Geesey GG (2010) A thermophilic bacterial origin and subsequent constraints by redox, light and salinity on the evolution of the microbial mercuric reductase. Environ Microbiol 12:2904–2917CrossRefGoogle Scholar
  29. Barr DW, Ingledew WJ, Norris PR (1990) Respiratory chain components of iron-oxidizing acidophilic bacteria. FEMS Microbiol Lett 70:85–89CrossRefGoogle Scholar
  30. Bathe S, Norris PR (2007) Ferrous iron- and sulfur-induced genes in Sulfolobus metallicus. Appl Environ Microbiol 73:2491–2497CrossRefGoogle Scholar
  31. Battaglia-Brunet F, Crouzet C, Breeze D, Tris H, Morin D (2011) Decreased leachability of arsenic linked to biological oxidation of As(III) in solid wastes from bioleaching liquors. Hydrometallurgy 107:34–39CrossRefGoogle Scholar
  32. Batty JD, Rorke GV (2006) Development and commercial demonstration of BioCOP™ thermophile process. Hydrometallurgy. 16th International Biohydrometallurgy Symposium 83(1–4):83–89CrossRefGoogle Scholar
  33. Bhattacharya S, Basu S, Chaudhuri P, Santra SC (2013) Assessment of mercury detoxification potentiality of isolated Streptococcus sp. MTCC 9724 under different environmental conditions. Environ Ecol Res 1(2):62–72Google Scholar
  34. Bissen M, Frimmel FH (2003) Arsenic—a review. Part I: occurrence, toxicity, speciation, mobility. Acta Hydrochimica et Hydrobiologica 31:9–18CrossRefGoogle Scholar
  35. Blake RC, Shute EA, Greenwood MM, Spencer GH, Ingledew WJ (1993) Enzymes of aerobic respiration on iron. FEMS Microbiol Rev 11:9–18CrossRefGoogle Scholar
  36. Blencowe DK, Morby AP (2003) Zn(II) metabolism in prokaryotes. FEMS Microbiol Rev 27:291–311CrossRefGoogle Scholar
  37. Blindauer CA, Harrison MD (2002) Multiple bacteria encode metallothioneins and Smt-like zinc fingers. Mol Microbiol 45(2):1421–1432CrossRefGoogle Scholar
  38. Boone DR, Liu Y, Zhao ZJ, Balkwill DL, Drake GR, Stevens TO, Aldrich HC (1995) Bacillus infernus sp. nov., an Fe(III)- and Mn(III)-reducing anaerobe from the deep terrestrial subsurface. Int J Syst Bacteriol 45:441–448CrossRefGoogle Scholar
  39. Borrok D, Fein JB, Kulpa CF (2004) Proton and Cd adsorption onto natural bacterial consortia: testing universal adsorption behavior. Geochim Cosmochim Acta 68:3231–3238CrossRefGoogle Scholar
  40. Boyanov MI, Kelly SD, Kemner KM, Bunker BA, Fein JB, Fowle DA (2003) Adsorption of cadmium to Bacillus subtilis bacterial cell walls: a pH-dependent X-ray absorption fine structure spectroscopy study. Geochim Cosmochim Acta 67:3299–3311CrossRefGoogle Scholar
  41. Boyd ES et al (2009) Methylmercury enters an aquatic food web through acidophilic microbial mats in Yellowstone National Park, WY. Environ Microbiol 11:950–959CrossRefGoogle Scholar
  42. Bridge T, Johnson DB (1998) Reduction of soluble iron and reductive dissolution of ferric iron-containing minerals by moderately thermophilic iron-oxidizing bacteria. Appl Environ Microbiol 64:2181–2186Google Scholar
  43. Brierley JA (1990) Acdidophilic thermophilic archaebacteria: potential application for metals recovery. FEMS Microbiol Rev 75:287–292CrossRefGoogle Scholar
  44. Brierley JA (2008) A perspective on developments in biohydrometallurgy. Hydrometallurgy 94:2–7CrossRefGoogle Scholar
  45. Brierley CL, Brierley JA (1973) A chemoautotrophic and thermophilic microorganism isolated from an acid hot spring. Can J Microbiol 19:183–188CrossRefGoogle Scholar
  46. Brierley CL, Brierley JA (2013) Progress in bioleaching: part B: applications of microbial processes by minerals industries. Appl Microbiol Biotechnol 97:7543–7552CrossRefGoogle Scholar
  47. Brim H, Venkateswaran A, Kostandarithes HM, Fredrickson JK, Daly MJ (2003) Engineering Deinococcus geothermalis for bioremediation of high-temperature radioactive waste environments. Appl Environ Microbiol 69:4545–4582CrossRefGoogle Scholar
  48. Brock TD, Brock KM, Belly RT, Weiss RL (1972) Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch Microbiol 84:54–68Google Scholar
  49. Brock TD, Gustafson J (1976) Ferric iron reduction by sulfur- and iron-oxidizing bacteria. Appl Environ Microbiol 32:567–571Google Scholar
  50. Bruins MR, Kapil S, Oehme FW (2000) Microbial resistance to metals in the environment. Ecotoxicol Environ Saf 45:198–207CrossRefGoogle Scholar
  51. Burnett PGG, Daughney CJ, Peak D (2006) Cd adsorption onto Anoxybacillus flavithermus: surface complexation modeling and spectroscopic investigations. Geochim Cosmochim Acta 70:5253–5269CrossRefGoogle Scholar
  52. Camargo FAO, Okeke BC, Bento FM, Frankenberger WT (2003) In vitro reduction of hexavalent chromium by a cell free extract of Bacillus sp. ES29 stimulated by Cu. Appl Microbiol Biotechnol 62:569–573CrossRefGoogle Scholar
  53. Campos J, Martinez-Pacheco M, Cervantes C (1995) Hexavalent-chromium reduction by a chromate-resistant Bacillus sp. strain. Antonie van Leeuwenhoek 68:203–208CrossRefGoogle Scholar
  54. Carlson HK, Iavarone AT, Gorur A et al (2012) Surface multiheme c-type cytochromes from Thermincola potens and implications for respiratory metal reduction by Gram-positive bacteria. P Natl Acad Sci USA 109:1702–1707CrossRefGoogle Scholar
  55. Casas-Flores S, Gomez-Rodriguez EY, Garcia-Meza JV (2015) Community of thermoacidophilic and arsenic resistant microoirganisms isolated from a deep profile of mine heaps. AMB Express 5(54):1–12Google Scholar
  56. Cason ED, Piater LA, van Heerden E (2012) Reduction of U(VI) by the deep subsurface bacterium, Thermus scotoductus SA-01, and the involvement of the ABC transporter protein. Chemosphere. 86(6):572–527CrossRefGoogle Scholar
  57. Castresana J, Lübben M, Saraste M (1995) New archaebacterial genes coding for redox proteins: implications for the evolution of aerobic metabolism. J Mol Biol 250:202–210CrossRefGoogle Scholar
  58. Cervantes C, Garcia JC, Devars S, Corona FG, Tavera HL, Guzman JC, Sanchez RM (2001) Interactions of chromium with microorganisms and plants. FEMS Microbiol Rev 25:335–347CrossRefGoogle Scholar
  59. Chaisuksant Y (2003) Biosorption of cadmium (II) and copper (II) by pretreated biomass of marine alga Gracilaria fisheri. Environ Technol 24:1501–1508CrossRefGoogle Scholar
  60. Chang JS, Yoon IH, Lee JH, Kim KR, An J, Kim KW (2010) Arsenic detoxification potential of aox genes in arsenite-oxidizing bacteria isolated from natural and constructed wetlands in the Republic of Korea. Environ Geochem Health 32(2):95–105CrossRefGoogle Scholar
  61. Chatziefthimiou AD, Crespo-Medina M, Wang Y, Vetriani C, Barkay T (2007) The isolation and initial characterization of mercury resistant chemolithotrophic thermophilic bacteria from mercury rich geothermal springs. Extremophiles 11:469–479CrossRefGoogle Scholar
  62. Chen L, Brügger K, Skovgaard M, Redder P, She Q, Torarinsson E, Greve B, Awayez M, Zibat A, Klenk H et al (2005) The genome of Sulfolobus acidocaldarius, a model organism of the Crenarchaeota. J Bacteriol 187:4992–4999CrossRefGoogle Scholar
  63. Cheung KH, Gu JD (2007) Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: a review. Int Biodet Biodegrad 59:8–15CrossRefGoogle Scholar
  64. Cheung KH, Lai HY, JD G (2006) Membrane-associated hexavalent chromium reductase of Bacillus megaterium TKW3 with induced expression. J Microbiol Biotechnol 16:855–862Google Scholar
  65. Childers SE, Lovley DR (2001) Differences in Fe(III) reduction in the hyperthermophilic archaeon Pyrobaculum islandicum versus mesophilic Fe(III)-reducing bacteria. FEMS Microbiol Lett 195:253–258CrossRefGoogle Scholar
  66. Chiu HJ, Johnson E, Schroeder I, Rees DC (2001) Crystal structures of a novel ferric reductase from the hyperthermophilic archaeon Archaeoglobus fulgidus and its complex with NADP(+). Structure 9:311–319CrossRefGoogle Scholar
  67. Choi SB, Yun YS (2006) Biosorption of cadmium by various types of dried sludge: an equilibrium study and investigation of mechanisms. J Hazard Mater 138(2):378–383CrossRefGoogle Scholar
  68. Choi Y, Jung E, Park H et al (2004) Construction of microbial fuel cells using thermophilic microorganisms, Bacillus licheniformis and Bacillus thermoglucosidasius. B Korean Chem Soc 25:813–818CrossRefGoogle Scholar
  69. Chudaev OV, Chudaeva VA, Karpov GA, Edmunds UM, Shand P (2000) Geokhimiya vod osnovnykh geotermal’nykh raionov Kamchatki (Geochemistry of Waters in the Main Geothermal Regions of Kamchatka). Dal’nauka, VladivostokGoogle Scholar
  70. Cochrane WW (1958) Farm prices: myth and reality. St. Paul University of Minnesota PressGoogle Scholar
  71. Correa-Llantén DN, Munoz-Ibacache SA, Maire M, Blamey JM (2014) Enzyme involvement in the biosynthesis of selenium nanoparticles by Geobacillus wiegelii strain Gwe1 isolated from a drying oven. Int J Biol Biomol Agric Food Biotechnol Eng 8(6):637–641Google Scholar
  72. Cummings DE, Caccavo F Jr, Fendorf S, Rosenzweig RF (1999) Arsenic mobilization by the dissimilatory Fe(III)-reducing bacterium Shewanella alga BrY. Environ Sci Technol 33:723–729Google Scholar
  73. D’Abzac P, Bordas F, Joussein E, van Hullebusch E, Lens PNL, Guibaud G (2010a) Characterization of the mineral fraction associated to extracellular polymeric substances (EPS) in anaerobic granular sludge. Environ Sci Technol 44:412–418CrossRefGoogle Scholar
  74. D’Abzac P, Bordas PF, van Hullebusch E, Lens PNL, Guibaud G (2010b) Extraction of extracellular polymeric substances (EPS) from anaerobic granular sludges: comparison of chemical and physical extraction protocols. Appl Microbiol Biotechnol 85:1589–1599CrossRefGoogle Scholar
  75. Das TK, Gomes CM, Bandeiras TM, Pereira MM, Teixeira M, Rousseau DL (2004) Active site structure of the aa3 quinol oxidase of Acidianus ambivalens. Biochim Biophys Acta 1655:306–320CrossRefGoogle Scholar
  76. Daulton TL, Little BJ, Jones-Meehan J, Blom DA, Allard LF (2007) Microbial reduction of chromium from the hexavalent to divalent state. Geochim Cosmochim Acta 71:556–565CrossRefGoogle Scholar
  77. Davies J, Davies D (2010) Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 74(3):417–433CrossRefGoogle Scholar
  78. Desai C, Jain K, Madamwar D (2008) Hexavalent chromate reductase activity in cytosolic fractions of Pseudomonas sp. G1DM21 isolated from Cr(VI) contaminated industrial landfill. Process Biochem 43:713–721Google Scholar
  79. Dhanjal S, Cameotra SS (2010) Aerobic biogenesis of selenium nanospheres by Bacillus cereus isolated from coalmine soil. Microb Cell Fact 9:52CrossRefGoogle Scholar
  80. Dinkla IJT, Gericke M, Geurkink BK, Hallberg KB (2009) Acidianus brierleyi is the dominant thermoacidophile in a bioleaching community processing chalcopyrite containing concentrates at 70°C. Adv Mater Res 71:67–70CrossRefGoogle Scholar
  81. Dixit S, Hering JG (2003) Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobility. Environ Sci Technol 37:4182e4189CrossRefGoogle Scholar
  82. Dobias E, Suvorova R, Bernier-Latmani (2011) Role of proteins in controlling selenium nanoparticle size. Nanotechnology 22(19):1–9CrossRefGoogle Scholar
  83. Dogan NM, Doganli GA, Dogan G, Bozkaya O (2015) characterization of extracellular polysaccharides (eps) produced by thermal Bacillus and determination of environmental conditions affecting exopolysaccharide production. Int J Environ Res 9(3):1107–1116Google Scholar
  84. Domic EM (2007) A review of the development and current status of copper bioleaching operations in Chile: 25 years of successful commercial implementation. In: Rawlings DE, Johnson DB (eds) Biomining. Springer, Berlin, pp 81–95CrossRefGoogle Scholar
  85. Donahoe-Christiansen J, Imperio SD, Jackson CR, Inskeep WP, McDermott TR (2004) Arsenite-oxidizing Hydrogenobaculum strain isolated from an acid-sulfate-chloride geothermal spring in Yellowstone National Park. Appl Environ Microbiol 70:1865–1868Google Scholar
  86. Donati ER, Castro C, Urbieta MS (2016) Thermophilic microorganisms in biominning. World J Microbiol Biotechnol 32(11):179CrossRefGoogle Scholar
  87. Dopson M, Baker-Austin C, Koppineedi PR, Bond PL (2003) Growth in sulfidic mineral environments: metal resistance mechanisms in acidophilic micro-organisms. Microbiology 149:1959–1970Google Scholar
  88. Dopson M, Ni G, Sleutels HJA, Tom (2015) Possibilities for extremophilic microorganisms in microbial electrochemical systems. FEMS Microbiol Rev 044(40):164–181Google Scholar
  89. Edgcomb VP, Molyneaux SJ, Saito MA, Lloyd K et al (2004) Sulfide ameliorates metal toxicity for deep-sea hydrothermal vent archaea. Appl Environment Microbiol 70(4):2551–2555CrossRefGoogle Scholar
  90. Edwards KJ, Bond PL, Gihring TM, Banfield JF (2000) An archaeal iron-oxidizing extreme acidophile important in acid mine drainage. Science 287:1796–1799CrossRefGoogle Scholar
  91. Erauso G, Reysenbach A-L, Godfry A et al (1993) Pyrococcus abyssi sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Arch Microbiol 160(5):338–349CrossRefGoogle Scholar
  92. Ferreira AC, Nobre MF, Rainey FA, Silva MT, Waite R, Burghardt J, Chung AP, da Costa MS (1997) Deinococcus geothermalis sp. nov. and Deinococcus murrayi sp. nov., two extremely radiation-resistant and slightly thermophilic species from hot springs. Int J Syst Bacteriol 47:939–947CrossRefGoogle Scholar
  93. Francis AJ, Dodge CJ (2008) Bioreduction of uranium(VI) complexed with citric acid by Clostridia affects its structure and solubility. Environ Sci Technol 42:8277–8282CrossRefGoogle Scholar
  94. Francois F, Lombard C, Gulgner JM, Soreau P, Brlan-Jalsson F, Martino G, Vandervennet M, Garda D et al (2011) Isolation and characterization of environmental bacteria capable of extracellular biosorption of mercury. Appl Environ Microbiol:1097–1106Google Scholar
  95. Freedman Z, Zhu C, Barkay T (2012) Mercury resistance a mercuric reductase activated and expression among chemotrophic thermophilic Aquificae. Appl Environ Microbiol 78(18):6568–6575CrossRefGoogle Scholar
  96. Fu Q, Kobayashi H, Kuramochi Y et al (2013) Bioelectrochemical analyses of a thermophilic biocathode catalyzing sustainable hydrogen production. Int J Hydrogen Energ 38:15638–15645CrossRefGoogle Scholar
  97. Fuchs T, Huber H, Teiner K, Burggraf S, Stetter KO (1995) Metallosphaera prunae, sp. nov., a novel metal-mobilizing, thermoacidophilic archaeum, isolated from a uranium mine in Germany. Syst Appl Microbiol 18:560–566CrossRefGoogle Scholar
  98. Fuchs T, Huber H, Burggraf S, Stetter KO (1996) 16S rDNA-based phylogeny of the archaeal order Sulfolobales and reclassification of Desulfurolobus ambivalens as Acidianus ambivalens comb. nov. Syst Appl Microbiol 19:56–60CrossRefGoogle Scholar
  99. Gabr RM, Hassan SHA, Shoreit AAM (2008) Biosorption of lead and nickel by living and nonliving cells of Pseudomonas aeruginosa ASU 6a. Int Biodeterior Biodegradation 62:195–203CrossRefGoogle Scholar
  100. Gadd GM, White C (1993) Microbial treatment of metal pollution—a working biotechnology? Trends Biotechnol 11:353–359CrossRefGoogle Scholar
  101. Ganguli A, Tripathi AK (2002) Bioremediation of toxic chromium from electroplating effluent by chromate-reducing Pseudomonas aeruginosa A2Chr in two bioreactors. Appl Microbiol Biotechnol 58:416–420CrossRefGoogle Scholar
  102. Gao X, Zhang J, Zhang L (2002) Hollow sphere selenium nanoparticles: their in vitro anti-hydroxyl radical effect. Adv Mater 14(4):290–293CrossRefGoogle Scholar
  103. Gavrilov SN, Slobodkin AI, Bonch-Osmolovskaya EA, de Vries S, Robb F (2004) Characterization of membrane-bound Fe(III) reductase activities from thermophilic gram-positive dissimilatory iron-reducing bacterium Thermoterrabacterium ferrireducens. Abstr 5th Int Conf on Extremophiles, Sept 19–23, Cambridge, Maryland, USA, pp 111Google Scholar
  104. Geissler A (2007) Prokaryotic microorganisms in uranium mining waste piles and their interactions with uranium and other heavy metals. Ph.D. Thesis, der Technischen Universität Bergakademie, FreibergGoogle Scholar
  105. Ghalib AK, Yasin M, Faisal M (2014) Characterization and metal detoxification potential of moderately thermophilic Bacillus cereus from geothermal springs of Himalayas. Braz Arch Biol Technol 57(4):554–560CrossRefGoogle Scholar
  106. Ghosh S, Mahapatra NR, Banerjee PC (1997) Metal resistance in Acidocella strains and plasmid-mediated transfer of this characteristic to Acidiphilium multivorum and Escherichia coli. Appl Environ Microbiol 63:4523–4527Google Scholar
  107. Gihring TM, Druschel GK, McCleskey RB, Hamers RJ, Banfield JF (2001) Rapid arsenite oxidation by Thermus aquaticus and Thermus thermophilus: field and laboratory investigations. Environ Sci Technol 35:3857–3862CrossRefGoogle Scholar
  108. Giovanella P, Costa AP, Schäffer N, Peralba MCR, Camargo FAO, Bento FM (2015) Detoxification of mercury by bacteria using crude glycerol from biodiesel as a carbon source. Water Air Soil Pollu 226:224CrossRefGoogle Scholar
  109. Girma G (2015) Microbial bioremediation of some heavy metals in soils: an updated review. Indian J Sci Res 6(1):147–161Google Scholar
  110. Giuffrè A, Gomes CM, Antonini G, D’Itri E, Teixeira M, Brunori M (1997) Functional properties of the quinol oxidase from Acidianus ambivalens and the possible catalytic role of its electron donor—studies on the membrane-integrated and purified enzyme. Eur J Biochem 250:383–388CrossRefGoogle Scholar
  111. Glasauer S, Langley S, Beveridge TJ (2002) Intracellular iron minerals in a dissimilatory iron-reducing bacterium. Science 295:117–119CrossRefGoogle Scholar
  112. Glasauer S, Langley S, Beveridge J (2004) Intracellular manganese granules formed by subsurface bacterium. Environ Microbiol 6:1042–1048CrossRefGoogle Scholar
  113. Gleißner M, Kaiser U, Antonopoulos E, Schäfer G (1997) The archaeal SoxABCD complex is a proton pump in Sulfolobus acidocaldarius. J Biol Chem 272:8417–8426CrossRefGoogle Scholar
  114. Glendinning KJ, Macaskie LE, Brown NL (2005) Mercury tolerance of thermophilic Bacillus sp. and Ureibacillus sp. Biotechnol Lett 27:1657–1662CrossRefGoogle Scholar
  115. Godlewska Zylkiewicz B (2006) Microorganisms in inorganic chemical analysis. Anal Bioanal Chem 38:114–123CrossRefGoogle Scholar
  116. Gold T (1992) The deep, hot biosphere. Proc Natl Acad Sci USA 89:6045–6049CrossRefGoogle Scholar
  117. Golovacheva RS, Karavaiko GI (1979) Sulfobacillus—a new genus of spore-forming thermophilic bacteria. Microbiology (Mikrobiologiya) 48:658–665Google Scholar
  118. Golyshina OV, Pivovarova TA, Karavaiko GI, Kondratéva TF, Moore ER, Abraham WR, Lünsdorf H, Timmis KN, Yakimov MM, Golyshin PN (2000) Ferroplasma acidiphilum gen. nov., sp. nov., an acidophilic, autotrophic, ferrous-iron-oxidizing, cell wall-lacking, mesophilic member of the Ferroplasmaceae fam. nov., comprising a distinct lineage of the Archaea. Int J Syst Evol Microbiol 50(3):997–1006Google Scholar
  119. Gonzalez CF, Ackerley DF, Lynch SV, Matin A (2005) ChrR a soluble quinone reductase of Pseudomonas putida that defends against H2O2. J Biol Chem 280(24):2590e2595CrossRefGoogle Scholar
  120. Gorby Y, Beveridge T, Blakemore R (1988) Characterization of the bacterial magnetosome membrane. J Bacteriol 170(2):834–841CrossRefGoogle Scholar
  121. Gorlenko V, Tsapin A, Namsaraev Z, Teal T, Tourova T, Engler D, Mielke R, Nealson K (2004) Anaerobranca californiensis sp. nov., an anaerobic, alkalithermophilic, fermentative bacterium isolated from a hot spring on Mono Lake. Int J Syst Evol Microbiol 54:739–743CrossRefGoogle Scholar
  122. Goyal N, Jain SC, Banerjee UC (2003) Comparative studies on the microbial adsorption of heavy metals. Adv Environ Res 7:311–319CrossRefGoogle Scholar
  123. Greene AC, Patel BKC, Sheehy AJ (1997) Deferribacter thermophilus gen. nov., sp. nov., a novel thermophilic manganese- and iron-reducing bacterium isolated from a petroleum reservoir. Int J Syst Bacteriol 47:505–509CrossRefGoogle Scholar
  124. Green-Ruiz C, Tirado VR, Gil BGF (2008) Cadmium and zinc removal from aqueous solutions by Bacillus jeotgali: pH, salinity and temperature effects. Bioresour Technol 99:3864–3870CrossRefGoogle Scholar
  125. Grogan DW (1989) Phenotypic characterization of the archaebacterial genus Sulfolobus: comparison of five wild-type strains. J Bacteriol 171:6710–6719CrossRefGoogle Scholar
  126. Grogan D, Palm P, Zillig W (1990) Isolate B12, which harbours a virus-like element, represents a new species of the archaebacterial genus Sulfolobus, Sulfolobus shibatae, sp. nov. Arch Microbiol 154:594–599CrossRefGoogle Scholar
  127. Guibaud G, Comte S, Bordas F, Dupuy S, Baudu M (2005) Comparison of the complexation potential of extracellular polymeric substances (EPS), extracted from activated sludges and produced by pure bacterial strains for cadmium, lead and nickel. Chemosphere 59:629–638CrossRefGoogle Scholar
  128. Guo HB et al (2010) Structure and conformational dynamics of the metalloregulator MerR upon binding of Hg(II). J Mol Biol 398:555–568CrossRefGoogle Scholar
  129. Gursahani YH (2015) Studies on thermophiles of hot water springs of Maharashtra State. Ph.D. Thesis, Dr BAM University, Aurangabad, IndiaGoogle Scholar
  130. Gursahani YH, Gupta SG (2015) Hexavalent chromium reduction by Anoxybacillus rupiensis isolated from hot water spring of Dhapoli, Maharashtra, India. J Pet Environ Biotechnol 6(4):1–5Google Scholar
  131. Ha PT, Lee TK, Rittmann BE et al (2012) Treatment of alcohol distillery wastewater using a Bacteroidetes-dominant thermophilic microbial fuel cell. Environ Sci Technol 46:3022–3030CrossRefGoogle Scholar
  132. Hallas LE, Thayer JS, Cooney JJ (1982) Factors affecting the toxic effect of tin on estuarine microorganisms. Appl Environ Microbiol 44:193–197Google Scholar
  133. Hallberg KB, Johnson DB (2001) Biodiversity of acidophilic prokaryotes. Adv Appl Microbiol 49:37–84CrossRefGoogle Scholar
  134. Han Y-L, Lo Y-C, Cheng C-L, Yu W-J, Nagarajan D, Liu C-H, Li Y-H, Chang J-S (2016) Calcium ion adsorption with extracellular proteins of thermophilic bacteria isolated from geothermal sites—a feasibility study. Biochem Eng J 117(2017):48–56Google Scholar
  135. Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species-opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56CrossRefGoogle Scholar
  136. Hassan SHA, Kim SJ, Jung A-Y, Joo JH, SE O, Yang JE (2009) Biosorptive capacity of Cd(II) and Cu(II) by lyophilized cells of Pseudomonas stutzeri. J Gen Appl Microbiol 55:27–34CrossRefGoogle Scholar
  137. Hassan SHA, Awad YS, Kabir MH, Oh SE, Joo JH (2010) Bacterial biosorption of heavy metals. In: Biotechnology: cracking new pastures, pp 79–110Google Scholar
  138. He ZG, Zhong H, Li Y (2004) Acidianus tengchongensis sp. nov., a new species of acidothermophilic archaeon isolated from an acidothermal Spring. Curr Microbiol 48:159–163Google Scholar
  139. He M, Li X, Liu H, Miller SJ, Wang G, Rensing C (2011) Characterization and genomic analysis of a highly chromate resistant and reducing bacterial strain Lysinibacillus fusiformis ZC1. J Hazard Mater 185(2–3):682–688CrossRefGoogle Scholar
  140. Heinrich-Salmeron A, Cordi A, Brochier-Armanet C, Halter D, Pagnout C, Abbaszadeh-fard E, Montaut D, Seby F, Bertin PN, Bauda P, Arsène-Ploetze F (2011) Unsuspected diversity of arsenite oxidizing bacteria as revealed by widespread distribution of aoxB gene in prokaryotes. Appl Environ Microbiol 77:4685–4692CrossRefGoogle Scholar
  141. Hettmann T, Schmidt CL, Anemüller S, Zähringer U, Moll H, Petersen A, Schäfer G (1998) Cytochrome b558/566 from the archaeon Sulfolobus acidocaldarius. A novel highly glycosylated, membrane-bound b-type hemoprotein. J Biol Chem 273:12032–12040CrossRefGoogle Scholar
  142. Hetzer A (2007) Sequestration of metal and metalloid ions by thermophilic bacteria. Ph.D. Thesis, University of Waikato, Department of Biological Sciences, Hamilton, New ZealandGoogle Scholar
  143. Hetzer A, Daughney CJ, Morgan HW (2006) Cadmium ion biosorption by the thermophilic bacteria Geobacillus stearothermophilus and G. thermocatenulatus. Appl Environ Microbiol 72:4020–4027CrossRefGoogle Scholar
  144. Hiller A, Henninger T, Schäfer G, Schmidt CL (2003) New genes encoding subunits of a cytochrome bc1-analogous complex in the respiratory chain of the hyperthermoacidophilic crenarchaeon Sulfolobus acidocaldarius. J Bioenerg Biomembr 35:121–131CrossRefGoogle Scholar
  145. Hirner AV, Feldmann I, Krupp E, Grumping R, Goguel R, Cullen WR (1998) Metal(loid) organic, compounds in geothermal gases and waters. Organic Chemistry 29:1765–1778Google Scholar
  146. Hobman J, Wilson JW, Brown N (2000) Microbial mercury reduction. In: DR Lovely (ed) Environmental metal-microbe interaction, Amer Soc Microbiol, Washington, pp 177–197Google Scholar
  147. Holden JF, Adams MWW (2003) Microbe–metal interactions in marine hydrothermal environments. Curr Opin Chem Biol 7:160–165CrossRefGoogle Scholar
  148. Huber G, Stetter KO (1991) Sulfolobus metallicus, sp. nov., a novel strictly chemolithoautotrophic thermophilic archaeal species of metal-mobilizers. Syst Appl Microbiol 14:372–378CrossRefGoogle Scholar
  149. Huber R, Eder W (2006) Aquificales. In: Dworkin M, Falkow S (eds) The prokaryotes, vol 7. Springer, New York, pp 925–938Google Scholar
  150. Huber H, Prangishvili D (2006) Sulfolobales. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrant E (eds) The prokaryotes. Springer Science, New York, pp 1028–1049Google Scholar
  151. Huber G, Spinnler C, Gambacorta A, Stetter K (1989) Metallosphaera sedula gen, and sp. nov. represents a new genus of aerobic, metal-mobilizing, thermoacidophilic archaebacteria. Syst Appl Microbiol 12:38–47CrossRefGoogle Scholar
  152. Huber G, Drobner E, Huber H, Stetter KO (1992) Growth by aerobic oxidation of molecular hydrogen in archaea—a metabolic property so far unknown for this domain. Syst Appl Microbiol 15:502–504CrossRefGoogle Scholar
  153. Hunter P (2008) A toxic brew we cannot live without. EMBO Reports 9(1):15–18CrossRefGoogle Scholar
  154. Hunter WJ, Manter DK (2009) Reduction of selenite to elemental red selenium by Pseudomonas sp. strain CA5. Curr Microbiol 58:493–498CrossRefGoogle Scholar
  155. Hynninen A (2010) Zinc, cadmium and lead resistanc mechanism in bacteria and their contribution to biosensing. Dissertation, Department of Food and Environmental Sciences, Faculty of Agriculture and Forestry, University of Helsinki, HelsinkiGoogle Scholar
  156. Ibrahim ASS, El-Tayeb MA, Elbadawi YB, Al-Salamah AA (2011) Bioreduction of Cr(VI) by potent novel chromate resistant alkaliphilic Bacillis sp. strain KSUCr5 isolated from hypersaline Soda Lakes. African Journal of Biotechnology 10(37):7207–7218Google Scholar
  157. Ip C (2006) Selenium and ER stress response: implication and exploitation for cancer therapy. Proceedings of the International Conference on Selenium in Biology and Medicine, July 2006, pp. 25–30, Universityof Wisconsin-Madison, pp. 63–63Google Scholar
  158. Islam FS, Gault AG, Boothman C, Polya DA, Charnock JM, Chatterjee D, Lloyd JR (2004) Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature 430:68–71CrossRefGoogle Scholar
  159. Ji G, Silver S (1992) Regulation and expression of the arsenic resistance operon from Staphylococcus aureus plasmid pI258. J Bacteriol 174:3684–3694CrossRefGoogle Scholar
  160. Johnson DB, Hallberg KB (2005) Acid mine drainage remediation options: a review. Sci Total Environ 338:3–14CrossRefGoogle Scholar
  161. Jong BC, Kim BH, Chang IS et al (2006) Enrichment, performance, and microbial diversity of a thermophilic mediatorless microbial fuel cell. Environ Sci Technol 40:6449–6454CrossRefGoogle Scholar
  162. Joutey NT, Sayel H, Bahafid W, El Ghachtouli N (2015) Mechanism of hexavalent chromium resistance and removal by microorganisms. In: Whitecare DM (ed) Reviews of environmental contamination and toxicology, vol 233. Springer International, Switzerland, pp 45–69Google Scholar
  163. Kadukova J, Vircikova E (2005) Comparison of differences between copper bioaccumulation and biosorption. Environ Int 31:227–232CrossRefGoogle Scholar
  164. Kafilzadeh F, Moghtsderi Y, Jahromi AR (2013) Isolation and identification of cadmium resistant bacteria in Soltan Abad River sediments and determination of tolerance of bacteria through MIC and MBC. Eur J Exp Biol 3(5):268–273Google Scholar
  165. Kambourova M, Mandeva R, Dimova D, Poli A, Nicolaus B, Tommonaro G (2009) Production and characterization of a microbial glucan, synthesized by Geobacillus tepidamans V264 isolated from Bulgarian hot spring. Carbohydrate Polymers 77(2):338–343CrossRefGoogle Scholar
  166. Kantar C, Demiray H, Dogan NM (2011) Role of microbial exopolymeric substances (EPS) on chromium sorption and transport in heterogeneous subsurface soil. I. Cr(III) complexation with EPS in aqueous solution. Chemosphere 82:1489–1495CrossRefGoogle Scholar
  167. Kao W-C, Huang C-C, Chang J-S (2008) Biosorption of nickel, chromium and zinc by MerP expressing recombinant Escherichia coli. J Hazard Mater 158:100–106Google Scholar
  168. Kappler U, Sly LI, McEwan AG (2005) Respiratory gene clusters of Metallosphaera sedula—differential expression and transcriptional organization. Microbiology 151:35–43CrossRefGoogle Scholar
  169. Karna RR, Uma L, Subramanian G, Mohan PM (1999) Biosorption of toxic metal ions by alkali-extracted biomass of a marine cyanobacterium, Phormidium valderianum BDU 30501. World J Microbiol Biotechnol 15:729–732CrossRefGoogle Scholar
  170. Kashefi K, Lovley DR (2000) Reduction of Fe(III), Mn(IV), and toxic metals at 100°C by Pyrobaculum islandicum. Appl Environ Microbiol 66:1050–1056CrossRefGoogle Scholar
  171. Kashefi K, Tor JM, Nevin KP, Lovley DR (2001) Reductive precipitation of gold by dissimilatory Fe(III)-reducing bacteria and archaea. Appl Environ Microbiol 67:3275–3279CrossRefGoogle Scholar
  172. Kashefi K, Holmes DE, Reysenbach A-L, Lovley DR (2002a) Use of Fe(III) as an electron acceptor to recover previously uncultured hyperthermophiles: isolation and characterization of Geothermobacterium ferrireducens gen. nov., sp. nov. Appl Environ Microbiol 68:1735–1742CrossRefGoogle Scholar
  173. Kashefi K, Tor JM, Holmes DE, Van G, Praagh CV, Reysenbach AL, Lovley DR (2002b) Geoglobus ahangari gen. nov., sp. nov., a novel hyperthermophilic archaeon capable of oxidizing organic acids and growing autotrophically on hydrogen with Fe(III) serving as the sole electron acceptor. Int J Syst Evol Microbiol 52:719–728Google Scholar
  174. Kashefi K, Holmes DE, Baross JA, Lovley DR (2003) Thermophily in the Geobacteraceae: Geothermobacter ehrlichii gen. nov., sp. nov., a novel thermophilic member of the Geobacteraceae from the “Bag City” hydrothermal vent. Appl Environ Microbiol 69:2985–2993CrossRefGoogle Scholar
  175. Kaur G, Iqbal M, Bakshi M (2009) Biomineralization of fine selenium crystalline rods and amorphous spheres. J Phys Chem C 113(31):13670–13676CrossRefGoogle Scholar
  176. Keasling JD (1997) Regulation of intracellular toxic metals and other cations by hydrolysis of polyphosphate. Ann N Y Acad Sci 829:242–249CrossRefGoogle Scholar
  177. Kenne L, Lindberg B (1983) Bacterial polysaccharides. In: Aspinall GO (ed) The polysaccharides, 2nd edn. Academic, New York, pp 287–363CrossRefGoogle Scholar
  178. Kermani AJN, Ghasemi MF, Khosravan A, Farahmand A, Shakibaie MR (2010) Cadmium bioremediation by metal resistant mutated bacterial isolate from active sludge of industrial effluent. Iran J Environ Health Sci Eng 7(4):279–286Google Scholar
  179. Kessi J (2006) Enzymic systems proposed to be involved in the dissimilatory reduction of selenite in the purple non-sulfur bacteria Rhodospirillum rubrum and Rhodobacter capsulatus. Microbiology 152:731–743CrossRefGoogle Scholar
  180. Khijniak TV, Slobodkin AI, Coker V, Renshaw JC, Livens FR, Bonch-Osmolovskaya EA, Birkeland N-K, Medvedeva-Lyalikova NN, Lloyd JR (2005) Reduction of uranium (VI) phosphate during growth of the thermophilic bacterium Thermoterrabacterium ferrireducens. Appl Environ Microbiol 71(10):6423–6426CrossRefGoogle Scholar
  181. Kieft TL, Fredrickson JK, Onstott TC, Gorby YA, Kostandarithes HM, Bailey TJ, Kennedy DW, Li SW, Plymale AE, Spadoni CM, Gray MS (1999) Dissimilatory reduction of Fe(III) and other electron acceptors by a Thermus isolate. Appl Environ Microbiol 65:1214–1221Google Scholar
  182. Kiel JAKW, Boels JM, Beldman G, Venema G (1991) The glgB gene from the thermophile Bacillus caldolyticus encodes a thermolabile branching enzyme. J DNA Seq Map 3:221–232CrossRefGoogle Scholar
  183. Kiel JAKW, Boels JM, Beldman G, Venema G (1992) Molecular cloning and nucleotide sequence of the glycogen branching enzyme gene (glgB) from Bacillus stearothermophillus and expression in Escherichia coli and Bacillus subtilis. Mol Gen Genet 230:136–144CrossRefGoogle Scholar
  184. Kim SU, Cheong YH, Seo DC, Hur JS, Heo JS, Cho JS (2007) Characterisation of heavy metal tolerance and biosorption capacity of bacterium strain CPB4 (Bacillus spp.) Water Sci Technol 55:105–111CrossRefGoogle Scholar
  185. King SA et al (2006) Mercury in water and biomass of microbial communities in hot springs of Yellowstone National Park, USA. Appl Geochem 21:1868–1879CrossRefGoogle Scholar
  186. Klimmek S, Stan HJ, Wilke A, Bunke G, Buchholz R (2001) Comparative analysis of the biosorption of cadmium, lead, nickel, and zinc by algae. Environ Sci Technol 35:4283–4288CrossRefGoogle Scholar
  187. Komorowski L, Verheyen W, Schäfer G (2002) The archaeal respiratory supercomplex SoxM from S. acidocaldarius combines features of quinole and cytochrome c oxidases. Biol Chem 383:1791–1799CrossRefGoogle Scholar
  188. Konishi Y, Yoshida S, Asai S (1995) Bioleaching of pyrite by acidophilic thermophile Acidianus brierleyi. Biotechnol Bioeng 48(6):592–600CrossRefGoogle Scholar
  189. Konishi Y, Nishimura H, Asai S (1998) Bioleaching of sphalerite by the acidophilic thermophile Acidianus brierleyi. Hydrometallurgy 47:339–352CrossRefGoogle Scholar
  190. Kornberg RNN, Ault-Riche D (1999) Inorganic polyphosphate: a molecule of many functions. Annu Rev Biochem 68:89–125CrossRefGoogle Scholar
  191. Kozubal M, Macur RE, Korf S, Taylor WP, Ackerman GG, Nagy A, Inskeep WP (2008) Isolation and distribution of a novel iron-oxidizing crenarchaeon from acidic geothermal springs in Yellowstone National Park. Appl Environ Microbiol 74:942–949CrossRefGoogle Scholar
  192. Kozubal MA, Dlakic M, Macur RE, Inskeep WP (2011) Terminal oxidase diversity and function in “Metallosphaera yellowstonensis”: gene expression and protein modeling suggest mechanism of Fe (II) oxidation in the Sulfolobales. Appl Environ Microbiol 77:1844–1853CrossRefGoogle Scholar
  193. Kumar R, Acharya C, Joshi SR (2011) Isolation and analyses of uranium tolerant Serratia marcescens strains and their utilization for aerobic uranium U(IV) biosorption. J Microbiol 49(4):568–574CrossRefGoogle Scholar
  194. Kwak YH, Lee DS, Kim HB (2003) Vibrio harveyi nitroreductase is also a chromate reductase. Appl Environ Microbiol 69(8):4390–4395Google Scholar
  195. Langner HW, Inskeep WP (2000) Microbial reduction of arsenate in the presence of ferrihydrite. Environ Sci Technol 34:3131–3136CrossRefGoogle Scholar
  196. Lapaglia C, Hartzell PL (1997) Stress-induced production of biofilm in the hyperthermophile Archaeoglobus fulgidus. Appl Environ Microbiol 63(8):3158–3163Google Scholar
  197. Lata S, Sharma C, Singh AK (2012) Microbial influenced corrosion by thermophilic bacteria. Cent Eur J Eng 2(1):113–122Google Scholar
  198. Lauwerys R, Haufroid V, Hoet P, Lison D (2007) Toxicologie industrielle et intoxications professionnelles, 5th edn. Elsevier-Masson, ParisGoogle Scholar
  199. Leal SS, Gomes CM (2007) Studies of the molten globule state of ferredoxin: structural characterization and implications on protein folding and iron-sulfur center assembly. Proteins 68(3):606–616CrossRefGoogle Scholar
  200. Lear G, Song B, Gault AG, Polya DA, Lloyd JR (2007) Molecular analysis of arsenate-reducing bacteria within Cambodian sediments following amendment with acetate. Appl Environ Microbiol 73(4):1041–1048CrossRefGoogle Scholar
  201. Lebrun E, Brugna M, Baymann F, Muller D, Lièvremont D, Lett M-C, Nitschke W (2003) Arsenite oxidase, an ancient bioenergetic enzyme. Mol Biol Evol 20:686–693CrossRefGoogle Scholar
  202. Lee J, Acar S, Doerr DL, Brierley JA (2011) Comparative bioleaching and mineralogy of composited sulfide ores containing enargite, covellite and chalcocite by mesophilic and thermophilic microorganisms. Hydrometallurgy 105:213–221CrossRefGoogle Scholar
  203. Leinfelder W, Forchhammer K, Zinoni F, Sawers G, Mandrand-Berthelot M, Bock A (1988) Escherichia coli genes whose products are involved in selenium metabolism. J Bacteriol 170(2):540–546CrossRefGoogle Scholar
  204. Lenart-Boroń A, Boroń P (2014) The effect of industrial heavy metal pollution on microbial abundance and diversity in soils - a review. In: Hernandez-Soriano MC (ed) Environmental risk assessment of soil contamination, InTech, Rijeka, pp 759–783Google Scholar
  205. Leonhartsberger S, Huber A, Lottspeich F, Böck A (2001) The hydH/G genes from Escherichia coli code for a zinc and lead responsive two-component regulatory system. J Mol Biol 307:93–105CrossRefGoogle Scholar
  206. Lett M-C, Muller D, Lièvremont D, Silver S, Santini J (2012) Unified nomenclature for genes involved in prokaryotic aerobic arsenite oxidation. J Bacteriol 194:207–208CrossRefGoogle Scholar
  207. Leung WC, Chua H, Lo WH (2001) Biosorption of heavy metals by bacteria isolated from activated sludge. Appl Biochem Biotechnol 91:171–184CrossRefGoogle Scholar
  208. Li LV, Zhou J, Zhang C, Cole DR, Gajdarziska-Josifovska M, Phelps TJ (1997) Thermophilic Fe(III)- reducing bacteria from the deep subsurface: the evolutionary implications. Science 277:1106–1109CrossRefGoogle Scholar
  209. Liu L-J, You X-Y, Guo X, Liu S-J, Jiang C-Y (2011a) Metallosphaera cuprina sp. nov., an acidothermophilic, metal-mobilizing archaeon. Int J Syst Evol Microbiol 61:2395–2400CrossRefGoogle Scholar
  210. Liu L-J, You X-Y, Zheng H, Wang S, Jiang C-Y, Liu S-J (2011b) Complete genome sequence of Metallosphaera cuprina, a metal sulfide-oxidizing archaeon from a hot spring. J Bacteriol 193:3387–3388CrossRefGoogle Scholar
  211. Lloyd JR, Macaskie LE (2000) Bioremediation of radioactive metals. In: Lovley DR (ed) Environmental microbe–metal interactions, ASM press, Washington DC, pp 277–327Google Scholar
  212. Lloyd JR, Chesnes J, Glasauer S, Bunker DJ, Livens FR, Lovley DR (2002) Reduction of actinides and fission products by Fe(III)-reducing bacteria. Geomicrobiol J 19:103–120CrossRefGoogle Scholar
  213. Logan BE, Rabaey K (2012) Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science 337:686–690CrossRefGoogle Scholar
  214. Losi ME, Amrhein C, Frankenberger WT (1994) Environmental biochemistry of chromium. Rev Environ Contam Toxicol 36:91–121CrossRefGoogle Scholar
  215. Lovley DR, Phillips EJ (1992) Reduction of uranium by Desulfovibrio desulfuricans. Appl Environ Microbiol 58(3):850–856Google Scholar
  216. Lübben M, Kolmerer B, Saraste M (1992) An archaebacterial terminal oxidase combines core structures of two mitochondrial respiratory complexes. EMBO J 11:805–812Google Scholar
  217. Lubben M, Arnaud S, Castresana J, Warne A, Albracht SP, Saraste MA (1994a) Second terminal oxidase in Sulfolobus acidocaldarius. Eur J Biochem 224:151–159Google Scholar
  218. Lubben M, Warne A, Albracht SP, Saraste M (1994b) The purified SoxABCD quinol oxidase complex of Sulfolobus acidocaldarius contains a novel haem. Mol Microbiol 13:327–335Google Scholar
  219. Maezato Y, Blum P (2012) Survival of the fittest: overcoming oxidative stress at the extremes of acid, heat and metal. Life 2:229–242CrossRefGoogle Scholar
  220. Mancuso Nichols C, Lardière SG, Bowman JP, Nichols PD, Gibson JAE, Guézennec J (2005) Chemical characterization of exopolysaccharides from Antarctic marine bacteria. Microb Ecol 49:578–589CrossRefGoogle Scholar
  221. Mandal AK, Cheung WD, Argüellos JM (2002) Characterization of a thermophilic P-type Ag+/Cu+-ATPase from the extremophile Archeoglobus fulgidus. J Biol Chem 277(9):7201–7208CrossRefGoogle Scholar
  222. Mapoleto M, Torto N, Prior B (2005) Evaluation of yeast strains as possible agents for trace enrichment of metal ions in aquatic environments. Talanta 65:930–937CrossRefGoogle Scholar
  223. Marshall CW, May HD (2009) Electrochemical evidence of direct electrode reduction by a thermophilic Gram-positive bacterium, Thermincola ferriacetica. Energy Environ Sci 2:699–705CrossRefGoogle Scholar
  224. Mathis B, Marshall C, Milliken C et al (2008) Electricity generation by thermophilic microorganisms from marine sediment. Appl Microbiol Biot 78:147–155CrossRefGoogle Scholar
  225. McLean J, Beveridge TJ (2001) Chromate reduction by a pseudomonad isolated from a site contaminated with chromate copper arsenate. Appl Environ Microbiol 67:1076–1084CrossRefGoogle Scholar
  226. Mikael Sehlin HBLE (1992) Oxidation and reduction of arsenic by Sulfolobus acidocaldarius strain BC. FEMS Microbiol Lett 93:87–92Google Scholar
  227. Miller KW, Risanico SS, Risatti JB (1992) Differential tolerance of Sulfolobus strains to transition-metals. FEMS Microbiol Lett 93:69–73CrossRefGoogle Scholar
  228. Miroshnichenko ML, Slobodkin AI, Kostrikina NA, L’Haridon S, Nercessian O, Spring S, Stackebrandt E, Bonch-Osmolovskaya EA, Jeanthon C (2003) Deferribacter abyssi sp. nov., an anaerobic thermophile from deep-sea hydrothermal vents of the Mid-Atlantic Ridge. Int J Syst Evol Microbiol 53:1637–1641CrossRefGoogle Scholar
  229. Møller AK, Barkay T, Al-Soud WA et al (2010) Diversity and characterization of mercury-resistant bacteria in snow, freshwater and sea-ice brine from the High Arctic. FEMS Microbiol Ecol 75(2011):390–401Google Scholar
  230. Morin I, Cuillel M, Lowe J, Crouzy S, Guillain F, Mintz E (2005) Cd2+- or Hg2+-binding proteins can replace the Cu+-chaperone Atx1 in delivering Cu+ to the secretory pathway in yeast. FEBS Lett 579:1117–1123CrossRefGoogle Scholar
  231. Mukherjee A, Wheaton GH, Blum PH, Kelly RM (2012) Uranium extremophily is an adaptive, rather than intrinsic, feature for extremely thermoacidophilic Metallosphaera species. Proc Natl Acad Sci USA 109:16702–16707CrossRefGoogle Scholar
  232. Muller D, Lievremont D, Simeonova DD, Hubert J-C, Lett M-C (2003) Arsenite oxidase (aox) genes from a metal-resistant β-proteobacterium. J Bacteriol 185:135–141CrossRefGoogle Scholar
  233. Narasingarao P, Haggblom MM (2007) Identification of anaerobic selenate respiring bacteria from aquatic sediments. Appl Environ Microbiol 73:3519–3527Google Scholar
  234. Nealson KH, Cox BL (2002) Microbial metal-ion reduction and Mars extraterrestrial expectations? Curr Opin Microbiol 5:296–300CrossRefGoogle Scholar
  235. Nemergut DR, Martin AP, Schmidt SK (2004) Integron diversity in heavy-metal-contaminated mine tailings and inferences about integron evolution. Appl Environ Microbiol 70:1160–1168CrossRefGoogle Scholar
  236. Nicolaus B, Manca MC, Romano I, Lama L (1993) Production of an exopolysaccharide from two thermophilic archaea belonging to the genus Sulfolobus. FEMS Microbiol Lett 109(2–3):203–206CrossRefGoogle Scholar
  237. Nies DH (1992) CzcR and CzcD, gene products affecting rregulation of resistance to cobalt, zinc and cadmium (czc system) in Alcaligens eutrophous. J Bacteriol 174:8102–8110CrossRefGoogle Scholar
  238. Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750CrossRefGoogle Scholar
  239. Nies DH (2003) Efflux-mediated heavy metal resistance im prokaryotes. FEMS Microbiol Rev 27(2003):313–339CrossRefGoogle Scholar
  240. Nies D, Silver S (2007) Molecular microbiology of heavy metals. Springer, BerlinCrossRefGoogle Scholar
  241. Noll M, Petrukhin K, Lutsenko S (1998) Identification of a novel transcription regulator from Proteus mirabilis, PMTR, revealed a possible role of YJAI protein in balancing zinc in Escherichia coli. J Biol Chem 273:21393–21401CrossRefGoogle Scholar
  242. Norris PR (2007) Acidophile diversity in mineral sulfide oxidation. In: Rawlings D, Johnson DB (eds) Biomining, Springer, Berlin, pp 199–216Google Scholar
  243. Norris PR, Clark DA, Owen JP, Waterhouse S (1996) Characteristics of Sulfobacillus acidophilus sp. nov. and other moderately thermophilic mineral-sulphide-oxidizing bacteria. Microbiology 142:775–783CrossRefGoogle Scholar
  244. Norris PR, Burton NP, Foulis NAM (2000) Acidophiles in bioreactor mineral processing. Extremophiles 4:71–76CrossRefGoogle Scholar
  245. Ohtake H, Silver S (1994) Bacterial detoxification of toxic chromate. In: Choudhuri GR (ed) Biological degradation and bioremediation of toxic chemicals, Discorides, Portland, pp 403–415Google Scholar
  246. Okibe N, Koga M, Sasaki K, Hirajima T, Heguri S, Asano S (2013) Simultaneous oxidation and immobilization of arsenite from refinery waste water by thermoacidophilic iron-oxidizing archaeon, Acidianus brierleyi. Miner Eng 48:126–134CrossRefGoogle Scholar
  247. Olafson RW, McCubbin WD, Kay CM (1988) Primary- and secondary-structural analysis of a unique prokaryotic metallothionein from a Synechococcus sp. cyanobacterium. Biochem J 251:691–699CrossRefGoogle Scholar
  248. Opperman DJ, van Heerden E (2008) A membrane-associated protein with Cr(VI)-reducing activity from Thermus scotoductus SA-01. FEMS Microbiol Lett 280(2):210–218CrossRefGoogle Scholar
  249. Oremland RS, Stolz JF (2005) Arsenic, microbes and contaminated aquifers. Trends Microbiol 13:45–49CrossRefGoogle Scholar
  250. Oremland R, Herbel M, Blum J, Langley S, Beveridge T, Jayan P, Sutto T, Ellis A, Curran S (2004) Structural and spectral features of selenium nanospheres produced by Se-respiring bacteria. Appl Environ Microbiol 70(1):52–60CrossRefGoogle Scholar
  251. Özdemir S, Kılınc E, Poli A, Nicolus B, Gűven K (2011) Cd, Cu, Ni, Mn and Zn resitance and bioaccumulation by thermophilic bacteria, Geobacillus toebii subsp. decanicus and Geobacillus thermoleovorans subsp. stromboliensis. World J Microbiol Biotechnol 28(1):155–163Google Scholar
  252. Özdemir S, Kılınc E, Poli A, Nicolus B (2013) Biosorption of heavy metals (Cd2+, Cu2+, Co2+, and Mn2+) by thermophilic bacteria Gebacillus therantarcticus and Anoxybacillus amylolyticus: equilibrium and kinetics. Biorem J 17(2):86–96CrossRefGoogle Scholar
  253. Özturk A (2007) Removal of nickel from aqueous solution by the bacterium Bacillus thuringiensis. J Hazard Mater 147:518–523CrossRefGoogle Scholar
  254. Pal A, Paul AK (2004) Aerobic chromate reduction by chromium resistant bacteria isolated from serpentine soil. Microbiol Res 159:347–354Google Scholar
  255. Pal A, Dutta S, Paul AK (2005) Reduction of hexavalent chromium by cell-free extract of Bacillus sphaericus AND 303 isolated from serpentine soil. Curr Microbiol 66:327–330CrossRefGoogle Scholar
  256. Pant D, Van Bogaert G, Diels L et al (2010) A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresource Technol 101:1533–1543CrossRefGoogle Scholar
  257. Pardo R, Herguedas M, Barrado E, Vega M (2003) Biosorption of cadmium, copper, lead and zinc by inactive biomass of Pseudomonas putida. Anal Bioanal Chem 376:26–32CrossRefGoogle Scholar
  258. Patra RC, Malik B, Beer M, Megharaj M, Naidu R (2010) Molecular characterization of chromium (VI) reducing potential in gram positive bacteria isolated from contaminated sites. Soil Biol Biochem 42(10):1857–1863Google Scholar
  259. Pattanapipitpaisal P, Reakyai T (2013) Cr (VI) reduction by cell-free extract of thermophilic Bacillus fusiformis NTR 9. Songklanakarin J Sci Technol 35(4):407–414Google Scholar
  260. Paulsen IT, Park JH, Choi PS, Saier MHJ (1997) A family of gram-negative bacterial outer membrane factors that function in the export of proteins, carbohydrates, drugs and heavy metals from gram-negative bacteria. FEMS Microbiol Lett 156:1–8CrossRefGoogle Scholar
  261. Peltier E, Vincent J, Finn C, Graham DW (2010) Zinc-induced antibiotic resistance in activated sludge bioreactors. Water Res 4:3829–3836CrossRefGoogle Scholar
  262. Peng D, Zhang J, Liu Q, Taylor E (2007) Size effect of elemental selenium nanoparticles (nano-Se) at supranutritional levels on selenium accumulation and glutathione S-transferase activity. J Inorg Biochem 101(10):1457–1463CrossRefGoogle Scholar
  263. Pepi M, Gaggi C, Bernardini E et al (2010) Mercury-resistant bacterial strains Pseudomonas and Psychrobacter spp. isolated from sediments of Orbetello Lagoon (Italy) and their possible use in bioremediation processes. Int Biodeterior Biodegrad 65(2011):85–91Google Scholar
  264. Pereira MM, Bandeiras TM, Fernandes AS, Lemos RS, Melo AM, Teixeira M (2004) Respiratory chains from aerobic thermophilic prokaryotes. J Bioenerg Biomembr 36:93–105CrossRefGoogle Scholar
  265. Perry JJ, Perman JA, Zaworotko MJ (2009) Design and synthesis of metal-organic frameworks using metal-organic polyhedral as supermolecular building blocks. Chem Soc Rev 38(5):1400–1417CrossRefGoogle Scholar
  266. Pinto G, Albertano P, Ciniglia C, Cozzolino S, Pollio A, Yoon H, Bhattacharya D (2003) Comparative approaches to the taxonomy of the genus Galdieria merola (Cyanidiales, Rhodophyta). Cryptogam Algol 24:13–32Google Scholar
  267. Pirela MLR, Suárez WAB, Vargas MMB (2014) Antibiotic- and heavy-metal resistance in bacteria isolated from deep subsurface in El Callao region, Venezuela Revista Colombiana de Biotecnología XVI(2):141–149Google Scholar
  268. Pitluck S, Sikorski J, Zeytun A et al (2011) Complete genome sequence of Calditerrivibrio nitroreducens type strain (Yu37-1T). Stand Genomic Sci 4:54–62CrossRefGoogle Scholar
  269. Plum LM, Rink L, Haase H (2010) The essential toxin: impact of zinc on human health. Int J Environ Res Public Health 7(4):1342–1365CrossRefGoogle Scholar
  270. Plumb JJ, Haddad CM, Gibson JAE, Franzmann PD (2007) Acidianus sulfidivorans sp. nov., an extremely acidophilic, thermophilic archaeon isolated from a solfatara on Lihir Island, Papua New Guinea, and emendation of the genus description. Int J Syst Evol Microbiol 57:1418–1423CrossRefGoogle Scholar
  271. Pol A, Barends TRM, Diet A, Khadem AF, Eygensteyn J, Jetten MSM, Op den Camp HJM (2014) Rare earth metals are essential for methanotrophic life in volcanic mudpots. Environ Microbiol 16:255–264CrossRefGoogle Scholar
  272. Poli A, Salerno A, Laezza G, Di Donato P, Dumontet S, Nicolous B (2008) Heavy metal resistance of some thermophiles: potential use of α-amylase from Anoxybacillus amylolyticus as a microbial enzymatic bioassay. Res Microbiol 160(2009):99–106Google Scholar
  273. Purschke WG, Schmidt CL, Petersen A, Schäfer G (1997) The terminal quinol oxidase of the hyperthermophilic archaeon Acidianus ambivalens exhibits a novel subunit structure and gene organization. J Bacteriol 179:1344–1353CrossRefGoogle Scholar
  274. Quemeneur M, Heinrich-Salmeron A, Muller D, Lievremont D, Jauzein M, Bertin PN, Garrido F, Joulian C (2008) Diversity surveys and evolutionary relationships of aoxB genes in aerobic arsenite oxidizing bacteria. Appl Environ Microbiol 74(14):4567–4573CrossRefGoogle Scholar
  275. Rabaey K, Rozendal RA (2010) Microbial electrosynthesis—revisiting the electrical route for microbial production. Nat Rev Microbiol 8:706–716CrossRefGoogle Scholar
  276. Ramirez-Diaz MI, Díaz-Pérez C, Vargas E, Riveros-Rosas H, Campos-García J, Cervantes C (2008) Mechanisms of bacterial resistance to chromium compounds. Biometals 21:321–332CrossRefGoogle Scholar
  277. Rawlings DE (1997) Biomining: theory, microbes and industrial processes. Springer, BerlinCrossRefGoogle Scholar
  278. Rawlings DE (2002) Heavy metal mining using microbes. Annu Rev Microbiol 56:65–91CrossRefGoogle Scholar
  279. Remonsellez F, Orell A, Jerez CA (2006) Copper tolerance of the thermoacidophilic archaeon Sulfolobus metallicus: possible role of polyphosphate metabolism. Microbiology 152:59–66CrossRefGoogle Scholar
  280. Richey C, Chovanec P, Hoeft SE, Oremland RS, Basu P, Stolz JF (2009) Respiratory arsenate reductase as a bidirectional enzyme. Biochem Biophys Res Commun 382:298–302CrossRefGoogle Scholar
  281. Rinker KD, Kelly RM (1996) Growth physiology of the hyperthermophilic archaeon Thermococcus litoralis: development of a sulfur-free defined medium, characterization of an exopolysaccharide, and evidence of biofilm formation. Appl Environ Microbiol 62(12):4478–4485Google Scholar
  282. Roh Y, Liu SV, Li G, Huang H, Phelps TJ, Zhou J (2002) Isolation and characterization of metal-reducing Thermoanaerobacter strains from deep subsurface environments of the Piceance Basin, Colorado. Appl Environ Microbiol 68:6013–6020CrossRefGoogle Scholar
  283. Rosen BP (1999) The role of efflux in bacterial resistance to soft metals and metalloids. Essays Biochem 34:1–15CrossRefGoogle Scholar
  284. Rosen BP (2002a) Transport and detoxification systems for transition metals, heavy metals and metalloids in eukaryotic and prokaryotic microbes. Comp Biochem Physiol A 133:689–693CrossRefGoogle Scholar
  285. Rosen B (2002b) Biochemistry of arsenic detoxification. FEBS Lett 529:86–92CrossRefGoogle Scholar
  286. Rosen BP, Bhattacharjee H, Zhou TQ, Walmsely AR (1999) Mechanism of the ArsA-ATPase. Biochim Biophys Acta 1461:207–215CrossRefGoogle Scholar
  287. Rosenstein R, Peschel A, Wieland B, Götz F (1992) Expression and regulation of the antimonite, arsenite, and arsenate resistance operon of Staphylococcus xylosus plasmid pSX267. J Bacteriol 174:676–683CrossRefGoogle Scholar
  288. Rossy E et al (2004) Is the cytoplasmic loop of MerT, the mercuric ion ransport protein, involved in mercury transfer to the mercuric reductase? FEBS Lett 575:86–90CrossRefGoogle Scholar
  289. Russell AJ, Berberich JA, Drevon GF, Koepsel RR (2003) Biomaterials for mediation of chemical and biological warfare agents. Annu Rev Biomed Eng 5:e27Google Scholar
  290. Saltikov CW, Newman DK (2003) Genetic identification of a respiratory arsenate reductase. Proc Natl Acad Sci USA 100:10983–10988CrossRefGoogle Scholar
  291. Santini JM, vanden Hoven RN (2004) Molybdenum-containing arsenite oxidase of the chemolithoautotrophic arsenite oxidizer NT-26. J Bacteriol 186:1614–1619CrossRefGoogle Scholar
  292. Sar P, Kazy S, Paul B, Sarkar A (2013) Metal bioremediation by thermophilic microorganisms. In: Satyanarayan T (ed) Thermophilic microbes in environment and industrial biotechnology: biotechnology of thermophiles, Springer Science, BerlinGoogle Scholar
  293. Sarangi A, Krishnan C (2008) Comparison of in vitro Cr (VI) reduction by CFEs of chromate resistant bacteria isolated from chromate contaminated soil. Bioresour Technol 99:4130–4137Google Scholar
  294. Sau GB, Chatterjee S, Sinha S, Mukherjee SK (2008) Isolation and characterization of a Cr(VI) reducing Bacillus firmus strain from industrial effluents. Polish J Microbiol 57:327–332Google Scholar
  295. Schäfer G, Engelhard M, Müller V (1999) Bioenergetics of the Archaea. Microbiol Mol Biol Rev 63:570–620Google Scholar
  296. Schelert J, Dixit V, Hoang V, Simbahan J, Drozda M, Blum P (2004) Occurrence and characterization of mercury resistance in the hyperthermophilic archaeon Sulfolobus solfataricus by use of gene disruption. J Bacteriol 186:427–437CrossRefGoogle Scholar
  297. Schelert J, Drozda M, Dixit V, Dillman A, Blum P (2006) Regulation of mercury resistance in the crenarchaeote Sulfolobus solfataricus. J Bacteriol 188:7141–7150CrossRefGoogle Scholar
  298. Scherer J, Nies DH (2009) CzcP is a novel efflux system contributing to transition metal resistance in Cupriavidus metallidurans CH34. Mol Microbiol 73:601–621CrossRefGoogle Scholar
  299. Schippers A (2007) Microorganisms involved in bioleaching and nucleic acid-based molecular methods for their identification and quantification. In: Donati ER, Sand W (eds) Microbial processing of metal sulfides. Springer, Dordrecht, The Netherlands, pp 3–33CrossRefGoogle Scholar
  300. Schippers A, Hedrich S, Vasters J, Drobe M, Sand W, Willscher S (2013) Biomining: metal recovery from ores with microorganisms. Adv Biochem Eng Biotechnol 141:1–47Google Scholar
  301. Schmidt CL (2004) Rieske iron-sulfur proteins from extremophilic organisms. J Bioenerg Biomembr 36:107–113CrossRefGoogle Scholar
  302. Schoepp-Cothenet B, Schütz M, Baymann F, Brugna M, Nitschke W, Myllykallio H, Schmidt C (2001) The membrane-extrinsic domain of cytochrome b558/566 from the Archaeon Sulfolobus acidocaldarius performs pivoting movements with respect to the membrane surface. FEBS Lett 487:372–376CrossRefGoogle Scholar
  303. Schroeder I, Johnson E, de Vries S (2003) Microbial ferric iron reductases. FEMS Microbiol Rev 27:427–447CrossRefGoogle Scholar
  304. Schuler D, Frankel RB (1999) Bacterial magnetosomes: microbiology, biomineralization and biotechnological applications. Appl Microbiol Biotechnol 52:464–473CrossRefGoogle Scholar
  305. Segerer A, Neuner A, Kristjansson JK, Stetter KO (1986) Acidianus infernus gen. nov., sp. nov., and Acidianus brierleyi comb. nov.: facultatively aerobic, extremely acidophilic thermophilic sulfur-metabolizing archaebacteria. Int J Syst Bacteriol 36:559–564Google Scholar
  306. Sehlin HM, Lindstrom EB (1992) Oxidation and reduction of arsenic by Sulfolobus acidocaldarius strain BC. FEMS Microbiol Lett 93:87–92CrossRefGoogle Scholar
  307. Seiler C, Berendonk T (2012) Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture. Front Microbiol 3:399CrossRefGoogle Scholar
  308. Seufferheld MJ, Alvarez HM, Farias ME (2008) Role of polyphosphates in microbial adaptation to extreme environments. Appl Environ Microbiol 74:5867–5874CrossRefGoogle Scholar
  309. Shakoori AR, Tahseen S, Haq RU (1999) Chromium tolerant bacteria isolated from industrial effluents and their use in detoxification of hexavalent chromium. Folia Microbiol 44:50–54CrossRefGoogle Scholar
  310. Sharma A, Jani K, Souche YS, Pandey A (2014) Microbial diversity of the Soldhar hot spring, India, assessed by analyzing 16S rRNA and protein-coding genes. Ann Microbiol.  https://doi.org/10.1007/s13213-014-0970-4
  311. She Q, Singh RK, Confalonieri F, Zivanovic Y, Allard G, Awayez MJ, Chan-Weiher CC, Clausen IG, Curtis BA, de Moors A et al (2001) The complete genome of the crenarchaeon Sulfolobus solfataricus P2. Proc Natl Acad Sci USA 98:7835–7840CrossRefGoogle Scholar
  312. Shelake RM, Hayashi H, Morita H (2016) Structural analysis and homology modeling of members of smt-like operon from thermophilic cyanobacterium Thermosynechococcus elongatus BP-1. J Proteins Proteomics 7(3):221–230Google Scholar
  313. Siddiquee S, Rovina K, Azad SA, Naher L, Suryani S et al (2015) Heavy metal contaminants removal from wastewater using the potential filamentous fungi biomass: a review. J Microb Biochem Technol 7:384–393Google Scholar
  314. Silver S (1998) Genes for all metals—a bacterial view of the periodic table. The 1996 Thom Award Lecture. J Ind Microbiol Biotechnol 20:1–12CrossRefGoogle Scholar
  315. Silver S, Phung LT (1996) Bacterial heavy metal resistances: new surprises. Annu Rev Microbiol 50:753–789CrossRefGoogle Scholar
  316. Silver S, le Phung T (2005) A bacterial view of the periodic table: genes and proteins for toxic inorganic ions. J Ind Microbiol Biotechnol 32:587–605CrossRefGoogle Scholar
  317. Simbahan J et al (2005) Community analysis of a mercury hot spring supports occurrence of domain-specific forms of mercuric reductase. Appl Environ Microbiol 71:8836–8845CrossRefGoogle Scholar
  318. Slobodkin AI (2005) Thermophilic microbial metal reduction. Microbiology 74(5):581–595CrossRefGoogle Scholar
  319. Slobodkin AI, Reysenbach A-L, Strutz N, Dreier M, Wiegel J (1997) Thermoterrabacterium ferrireducens gen. nov., sp., nov. a thermophilic anaerobic, dissimilatory Fe(III)-reducing bacterium from a continental hot spring. Int J Syst Bacteriol 47:541–547CrossRefGoogle Scholar
  320. Slobodkin A, Jeanthon C, L’Haridon S, Nazina T, Miroshnichenko M, Bonch-Osmolovskaya E (1999a) Dissimilatory reduction of Fe(III) by thermophilic bacteria and archaea in deep subsurface petroleum reservoirs of Western Siberia. Curr Microbiol 39:99–102CrossRefGoogle Scholar
  321. Slobodkin A, Tourova TP, Kuznetsov BB, Kostrikina NA, Chernyh NA, Bonch-Osmolovskaya EA (1999b) Thermoanaerobacter siderophilus sp. nov., a novel dissimilatory Fe(III)-reducing anaerobic thermophilic bacterium. Int J Syst Bacteriol 49:1471–1478CrossRefGoogle Scholar
  322. Slobodkin A et al (2001) Evidence for the presence of thermophilic Fe(III)-reducing microorganisms in a deep-sea hydrothermal vents at 13°N (East Pacific Rise). FEMS Microbiol Ecol 36(2–3):235–243Google Scholar
  323. Slobodkin AI, Chistyakova NI, Rusakov VS (2004) High-temperature microbial sulfate reduction can be accompanied by magnetite formation. Mikrobiologiya 73:553–557Google Scholar
  324. Sobol Z, Schiestl RH (2012) Intracellular and extracellular factors influencing Cr(VI) and Cr(III) genotoxicity. Environ Mol Mutagen 53:94–100Google Scholar
  325. Sokolova TG, Gonzalez JM, Kostrikina NA, Chernyh NA, Slepova TV, Bonch-Osmolovskaya EA, Robb FT (2004) Thermosinus carboxydivorans gen. nov., sp. nov., a new anaerobic thermophilic carbon monoxide oxidizing hydrogenogenic bacterium from a hot pool of Yellowstone National Park. Int J Syst Evol Microbiol 54:2353–2359CrossRefGoogle Scholar
  326. Spada S, Pembroke JT, Gerard Wall J (2002) Isolation of a novel Thermus thermophilus metal efflux protein that improves Escherichia coli growth under stress conditions. Extremophiles 6:301–308CrossRefGoogle Scholar
  327. Spain A (2003) Implications of microbial heavy metal tolerance in the environment. Rev Undergrad Res 2:1–6Google Scholar
  328. Srivastava P, Kowshik M (2013) Mechanisms of metal resistance and homeostasis in Haloarchea. Archaea Article ID 732864:1–16Google Scholar
  329. Stepanauskas R, Glenn TC, Jagoe CH, Tuckfield RC, Lindell AH, King CJ, McArthur JV (2006) Co-selection for microbial resistance to metals and antibiotics in freshwater microcosms. Environ Microbiol 8:1510–1514CrossRefGoogle Scholar
  330. Stetter KO (1996) Hyperthermophilic procaryotes. FEMS Microbiol Rev 18:149–158CrossRefGoogle Scholar
  331. Stolz JF, Basu P, Santini JM, Ronald OS (2006) Arsenic and selenium in microbial metabolism. Ann Rev Microbiol 60:107–130Google Scholar
  332. Summers A (2002) Generally overlooked fundamentals of bacterial genetics and ecology. Clinical Infectious Diseases 34:s84–s92CrossRefGoogle Scholar
  333. Sutherland IW (1983) Extracellular polysaccharides. In: Rehm HJ, Reed G (eds) Biotechnology: biomass, microorganisms for special applications, microbial products I, energy from renewable resources, Chemie, Wienheim, pp 531–574Google Scholar
  334. Takai K, Kobayashi H, Nealson KH, Horikoshi K (2003a) Deferribacter desulfuricans sp. nov., a novel sulfur-, nitrate- and arsenate-reducing thermophile isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 53:839–846CrossRefGoogle Scholar
  335. Takai K, Kobayashi H, Nealson KH, Horikoshi K (2003b) Sulfurihydrogenibium subterraneum gen. nov., sp. nov., from a subsurface hot aquifer. Int J Syst Evol Microbiol 53:823–827CrossRefGoogle Scholar
  336. Takayanagi S, Kawasaki H, Sugimori K, Yamada T, Sugai A, Ito T, Yamasato K, Shioda M (1996) Sulfolobus hakonensis sp. nov., a novel species of acidothermophilic archaeon. Int J Syst Evol Microbiol 46:377–382Google Scholar
  337. Tanaka Y, Tsumoto K, Nakanishi T, Yasutake Y, Sakai N, Yao M, Tanaka I, Kumagai I (2004) Structural implications for heavy metal-induced reversible assembly and aggregation of a protein: the case of Pyrococcus horikoshii CutA. FEBS Lett 556:167–174CrossRefGoogle Scholar
  338. Tanaka M, Okamura Y, Arakaki A, Tanaka T, Takeyama H, Matsunaga T (2006) Origin of magnetosome membrane: proteomic analysis of magnetosome membrane and comparison with cytoplasmic membrane. Proteomics 6(19):5234–5247CrossRefGoogle Scholar
  339. Tang K, Barry K, Chertkov O, Dalin E, Han CS, Hauser LJ et al (2011) Complete genome sequence of the filamentous anoxygenic phototrophic bacterium Chloroflexus aurantiacus. BMC Genomics 12:334Google Scholar
  340. Tejo P, Sharma N, Prakash R, Raina K, Fellowes J, Pearce C, Lloyd J, Pattrick R (2009) Aerobic microbial manufacture of nanoscale selenium: exploiting nature’s bio-nanomineralization potential. Biotechnol Lett 31(12):1857–1862CrossRefGoogle Scholar
  341. Telmer K, Veiga MM (2009) World emissions of mercury from artisanal and small scale gold mining. In: Pirrone N, Mason R (eds) Mercury fate and transport in the global atmosphere: emissions, measurements and models, Springer Science + Business Media, New York, pp 131–172Google Scholar
  342. Ter Heijne A, Liu F, Weijden R et al (2010) Copper recovery combined with electricity production in amicrobial fuel cell. Environ Sci Technol 44:4376–4381CrossRefGoogle Scholar
  343. Thacker U, Parikh R, Shouche Y, Madamwar D (2007) Reduction of chromate by cell-free extract of Brucella sp. isolated from Cr(VI) contaminated sites. Bioresour Technol 98:1541–1547Google Scholar
  344. Thatoi H, Das S, Miishra J, Rath BP, Das N (2014) Bacterial chromate reductase, a potential enzyme for bioremediation of hexavalent chromium: a review. J Environ Manag 146:383–399Google Scholar
  345. Tomova I, Disheva-Stoilova M, Tonkova-Vaileva E (2014) Characterization of heavy metals resistant heterotrophic bacteria from soils in the Windmill Islands region, Wilkes Land, East Antarctica. Polish Polar Res 35(4):593–607CrossRefGoogle Scholar
  346. Toress-Sanchez R, Magana-Vazuez A, Sanchez-Yanez JM (1997) High temperature microbial corrosion in the condenser of a geothermal electric power unit. Mater Perform 36:43–46Google Scholar
  347. Tottey S, Harvie DR, Robinson NJ (2005) Understanding how cells allocate metals using metal sensors and metallochaperones. Acc Chem Res 38:775–783CrossRefGoogle Scholar
  348. Tourney J, Ngwenya BT, Mosselmans JWF, Magennis M (2009) Physical and chemical effects of extracellular polymers (EPS) on Zn adsorption to Bacillus licheniformis S-86. J Colloid Interf Sci 337:381–389CrossRefGoogle Scholar
  349. Turner JS, Morby AP, Whitton BA, Gupta A, Robinson NJ (1993) Construction of Zn2+/Cd2+ hypersensitive cyanobacterial mutants lacking a functional metallothionein locus. J Biol Chem 268:4494–4498Google Scholar
  350. Turner RJ, Weiner JH, Taylor DE (1998) Selenium metabolism in Escherichia coli. Biometals 11:223–227CrossRefGoogle Scholar
  351. Tuzen M, Saygi KO, Usta C, Soylak M (2008) Pseudomonas aeruginosa immobilized multiwalled carbon nanotubes as biosorbent for heavy metal ions. Bioresour Technol 99:1563–1570CrossRefGoogle Scholar
  352. Uemori T, Ishino Y, Toh H, Asada K, Kato I (1993) Organization and nucleotide sequence of the DNA polymerase gene from the archaeon Pyrococcus furiosus. Nucleic Acids Res 21:259–265Google Scholar
  353. Umrania VV (2005) Bioremediation of toxic heavy metals using acidothermophilic autotrophes. Bioresour Technol 97(2006):1237–1242Google Scholar
  354. Vadas A, Monbouquette HG, Johnson E, Schroeder I (1999) Identification and characterization of a novel ferric reductase from the hyperthermophilic archaeon Archaeoglobus fulgidus. J Biol Chem 274:36715–36721CrossRefGoogle Scholar
  355. Vagras M, Kasheff K, Blunt-Harris E, Lovley D (1998) Microbiological evidence for Fe(III) reduction on early Earth. Nature 395:65–67CrossRefGoogle Scholar
  356. Valls M, de Lorenzo V (2002) Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. FEMS Microbiol Rev 26:328–338CrossRefGoogle Scholar
  357. van der Maas P, van de Sandt T, Klapwijk B, Lens P (2003) Biological reduction of nitric oxide in aqueous Fe(II) EDTA solutions. Biotechnol Prog 19:323–1328Google Scholar
  358. van der Merwe JA, Deane SM, Rawlings DE (2010) The chromosomal arsenic resistance genes of Sulfobacillus thermosulfidooxidans. Hydrometallurgy 104:477–482Google Scholar
  359. Van Lis R, Nitschke W, Duval S, Schoepp-Cothenet B (2013) Arsenics as bioenergetic substrates. Biochim Biophys Acta 1827:176–188CrossRefGoogle Scholar
  360. vanden Hoven RN, Santini JM (2004) Arsenite oxidation by the heterotrophy Hydrogenophaga sp. str. NT-14: the arsenite oxidase and its physiological electron acceptor. Biochim Biophys Acta 1656:148–155CrossRefGoogle Scholar
  361. Vartanyan NS, Karavaiko GI, Pivovarova TA, Dorofeev AG (1990) Resistance of Sulfobacillus thermosulfidooxidans subspecies asporogenes to Cu2+, Zn2+ and Ni2+ ions. Microbiology (English translation of Mikrobiologiya) 59:399–404Google Scholar
  362. Vera M, Schippers A, Sand W (2013) Progress in bioleaching: fundamentals and mechanism of bacterial metal sulphide oxidation—part A. Appl Microbiol Biotechnol 97:7529–7541Google Scholar
  363. Vetriani C, Chew YS, Miller SM, Yagi J, Coombs J, Lutz RA, Barkay T (2005) Mercury adaptation among bacteria from a deep sea hydrothermal vent. Appl Environ Microbiol 71(1):220–226CrossRefGoogle Scholar
  364. Volesky B (2003) Sorption and biosorption. BV Sorbex, Inc., Montreal-St. LambertGoogle Scholar
  365. von Hoek AHAM, Mevius D, Guerra B, Mullany P, Roberts AP, JMH A (2011) Acquired antibiotic resistance genes: an overview. Front Microbiol 2:203Google Scholar
  366. Wang H, Zhang J, Yu H (2007) Elemental selenium at nano size possesses lower toxicity without compromising the fundamental effect on selenoenzymes: comparison with selenomethionine in mice. Free Radic Biol Med 42(10):1524–1533CrossRefGoogle Scholar
  367. Wang Y, Freedman Z, Lu-Irving P, Kaletsky R, Barkay T (2009) An initial characterization of the mercury resistance (mer) system of the thermophilic bacterium Thermus thermophilus HB27. FEMS Microbiol Ecol 67:118–129CrossRefGoogle Scholar
  368. Wang Y et al (2011) Environmental conditions constrain the distributionand diversity of archaeal merA in Yellowstone National Park, Wyoming, USA. Microb Ecol 62:739–752CrossRefGoogle Scholar
  369. Watkin ELJ, Keeling SE, Perrot FA, Shiers DW, Palmer ML, Watling HR (2009) Metals tolerance in moderately thermophilic isolates from a spent copper sulfide heap, closely related to Acidithiobacillus caldus, Acidimicrobium ferrooxidans and Sulfobacillus thermosulfidooxidans. J Ind Microbiol Biotechnol 36:461–465CrossRefGoogle Scholar
  370. Wheaton G, Counts J, Mukherjee A, Kruh J, Kelly R (2015) The confluence of heavy metal biooxidation and heavy metal resistance: Implications for bioleaching by extreme thermoacidophiles. Minerals 5:397–451CrossRefGoogle Scholar
  371. Wright MH, Patel BKC, Greens AC (2012) Thermophilic bacteria from Paralana hot springs in thr Northern Flinders ranges of South Australia. Conference paper.  10.13140/RG.2.1.2765.5525
  372. Wrighton KC, Agbo P, Warnecke F et al (2008) A novel ecological role of the Firmicutes identified in thermophilic microbial fuel cells. ISME J 2:1146–1156CrossRefGoogle Scholar
  373. Wrighton KC, Thrash JC, Melnyk RA, Bigi JP, Byrne-Bailey KG, Remis JP, Schichnes D, Auer M, Chang CJ, Coates JD (2011) Evidence for direct electron transfer by a gram-positive bacterium isolated from a microbial fuel cell. Appl Environ Microbiol 77(21):7633–7639CrossRefGoogle Scholar
  374. Wuertz S, Muller E, Spaeth R, Pfleiderer P, Flemming H-C (2000) Detection of heavy metals in bacterial biofilms and microbial floes with the fluorescent complexing agent Newport Green. J Ind Microbiol Biotechnol 24:116–123CrossRefGoogle Scholar
  375. Xiang X, Dong X, Huang L (2003) Sulfolobus tengchongensis sp. nov., a novel thermoacidophilic archaeon isolated from a hot spring in Tengchong, China. Extremophiles 7:493–498CrossRefGoogle Scholar
  376. Xu XR, Li HB, Gu JD (2004) Reduction of hexavalent chromium by ascorbic acid in aqueous solutions. Chemosphere 57:609–613CrossRefGoogle Scholar
  377. Xu XR, Li HB, Gu JD, Li XY (2005) Kinetics of the reduction of chromium (VI) by vitamin C. Environ Toxicol Chem 24:1310–1314CrossRefGoogle Scholar
  378. Yadav V, Sharma N, Prakash R, Raina K, Bharadwaj L, Tejo P (2008) Generation of selenium containing nano-structures by soil bacterium, Pseudomonas aeruginosa. Biotechnol 7(2):299–304CrossRefGoogle Scholar
  379. Yamamura S, Amachi S (2014) Microbiology of inorganic arsenic: from metabolism to bioremediation. Journal of Bioscience and Bioengineering 118(1):1–9CrossRefGoogle Scholar
  380. Yang J, Li Q, Yang H, Yan L, Yang L, Yu L (2008) Overexpression of human CUTA isoform 2 enhances the cytotoxicity of copper to HeLa cells. Acta Biochim Pol 55:411–415Google Scholar
  381. Yang J, He M, Wang G (2009) Removal of toxic chromate using free and immobilized Cr(VI) reducing bacterial cells of Intrasporangium sp Q5-1. World J Microbiol Biotechnol 25(9):1579–1587CrossRefGoogle Scholar
  382. Yee N, Fein J (2001) Cd adsorption onto bacterial surfaces: a universal adsorption edge? Geochim Cosmochim Acta 65:2037–2042CrossRefGoogle Scholar
  383. Zachara JM, Kukkadapu RK, Fredrickson JK et al (2002) Biomineralization of poorly crystalline Fe(III) oxides by dissimilatory metal reducing bacteria. Geomicrobiology J 19:179–207CrossRefGoogle Scholar
  384. Zavarzina DG, Tourova TP, Kuznetsov BB, Bonch-Osmolovskaya EA, Slobodkin AI (2002) Thermovenabulum ferriorganovorum gen. nov., sp. nov., a novel thermophilic, anaerobic, endospore forming bacterium. Int J Syst Evol Microbiol 52:1737–1743Google Scholar
  385. Zhang D, Wang J, Pan X (2006) Cadmium sorption by EPSs produced by anaerobic sludge under sulfate-reducing conditions. J Hazard Mater B 38:589–593CrossRefGoogle Scholar
  386. Zhang D, Wang J, Zhao J, Cai Y, Lin Q (2016) Comparative study of nickel removal from synthetic wastewater by a sulfate-reducing bacteria filter and a zero valent iron—sulfate-reducing bacteria filter. Geomicrobiol J 15:318–324CrossRefGoogle Scholar
  387. Zhao S et al (2014) Structural characterization and biosorption of exopolysaccharides from Anoxybacillus sp. R4-33 isolated from radioactive radon hot spring. Appl Biochem Biotechnol 172(5):2732–2746Google Scholar
  388. Zheng S, Su J, Wang L, Yao R et al (2014) Selenite reduction by the obligate aerobic bacterium Commamonas testosteronii S44 isolated from a metal-contaminated soil. BMC Microbiology 14(204):1–13Google Scholar
  389. Zhou J, Liu S, Xia B, Zhang C, Palumbo AV, Phelps TJ (2001) Molecular characterization and diversity of thermophilic iron-reducing enrichment cultures from deep subsurface environments. J Appl Microbiol 90:96–105CrossRefGoogle Scholar
  390. Zillig W, Stetter KO, Wunderl S, Schulz W, Priess H, Scholz I (1980) The Sulfolobus-“Caldariella” group: taxonomy on the basis of the structure of DNA-dependent RNA polymerases. Arch Microbiol 125:259–269CrossRefGoogle Scholar
  391. Zillig W, Yeats S, Holz I, Böck A, Rettenberger M, Gropp F, Simon G (1986) Desulfurolobus ambivalens, gen. nov., sp. nov., an autotrophic archaebacterium facultatively oxidizing or reducing sulfur. Syst Appl Microbiol 8:197–203CrossRefGoogle Scholar
  392. Zobrist J, Dowdle PR, Davis JA, Oremland RS (2000) Mobilization of arsenite by dissimilatory reduction of adsorbed arsenate. Environ Sci Technol 34:4747–4753CrossRefGoogle Scholar
  393. Zulaika E, Sembiring L (2013) Indigenous Mercury resistant bacterial isolates belong to the genus bacillus from Kalimas Surabaya as a potential mercury bioreducer. J Appl Environ Biol Sci 4(1):72–76Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Botany and MicrobiologyHemvati Nandan Bahuguna Garhwal UniversitySrinagar (Garhwal)India
  2. 2.School of Life SciencesCentral University of GujaratGandhinagarIndia

Personalised recommendations