Environmental Science and Pollution Research

, Volume 25, Issue 7, pp 6251–6264 | Cite as

Transgene escape and persistence in an agroecosystem: the case of glyphosate-resistant Brassica rapa L. in central Argentina

  • Claudio E. PandolfoEmail author
  • Alejandro Presotto
  • Francisco Torres Carbonell
  • Soledad Ureta
  • Mónica Poverene
  • Miguel Cantamutto
Research Article


Brassica rapa L. is an annual Brassicaceae species cultivated for oil and food production, whose wild form is a weed of crops worldwide. In temperate regions of South America and especially in the Argentine Pampas region, this species is widely distributed. During 2014, wild B. rapa populations that escaped control with glyphosate applications by farmers were found in this area. These plants were characterized by morphology and seed acidic profile, and all the characters agreed with B. rapa description. The dose-response assays showed that the biotypes were highly resistant to glyphosate. It was also shown that they had multiple resistance to AHAS-inhibiting herbicides. The transgenic origin of the glyphosate resistance in B. rapa biotypes was verified by an immunological test which confirmed the presence of the CP4 EPSPS protein and by an event-specific GT73 molecular marker. The persistence of the transgene in nature was confirmed for at least 4 years, in ruderal and agrestal habitats. This finding suggests that glyphosate resistance might come from GM oilseed rape crops illegally cultivated in the country or as a seed contaminant, and it implies gene flow and introgression between feral populations of GM B. napus and wild B. rapa. The persistence and spread of the resistance in agricultural environments was promoted by the high selection pressure imposed by intensive herbicide usage in the prevalent no-till farming systems.


Transgenic crops Gene flow Herbicide resistance Wild turnip OGM Hybridization Introgression 



We thank El Diez, La Isaura, Morales, and La Sarita Co. for letting us conduct our research in their fields and for providing historical records of herbicide applications. We also extend our thanks to Damian Gopar, Agustín Bilbao, and Horacio Repetto for their valuable contributions; to BASF Argentina Co., in particular the assistance of Juan Pablo Migasso and Fabricio Mock; and to Ignacio Barragué and Franco Ruiz for helping in the assays. We also thank Noemí Fritz and Cámara Arbitral de Cereales Bahía Blanca for the analysis of grain oil content and fatty acid composition.

Funding information

We gratefully acknowledge the National Research Council of Argentina (CONICET) for a fellowship to CEP. This work was supported by Agencia Nacional de Promoción Científica y Técnica (grant ANPCYT-PICT 2854).

Supplementary material

11356_2017_726_MOESM1_ESM.pdf (650 kb)
ESM 1 (PDF 649 kb)


  1. Agnihotri A, Prem D, Gupta K (2007) The chronicles of oil and meal quality improvement in oilseed rape. In: Gupta S (ed) Advances in botanical research, Volume 45: Rapeseed breeding. Academic Press - Elsevier Ltd, San Diego, pp 49–97Google Scholar
  2. Allainguillaume J, Alexander M, Bullock JM, Saunders M, Allender CJ, King G, Ford CS, Wilkinson MJ (2006) Fitness of hybrids between rapeseed (Brassica napus) and wild Brassica rapa in natural habitats. Mol Ecol 15:1175–1184. CrossRefGoogle Scholar
  3. Allender CJ, King GJ (2010) Origins of the amphiploid species Brassica napus L. investigated by chloroplast and nuclear molecular markers. BMC Plant Biol 10:54. CrossRefGoogle Scholar
  4. Aono M, Wakiyama S, Nagatsu M, Nakajima N, Tamaoki M, Kubo A, Saji H (2006) Detection of feral transgenic oilseed rape with multiple-herbicide resistance in Japan. Environ Biosaf Res 5:77–87. CrossRefGoogle Scholar
  5. Aono M, Wakiyama S, Nagatsu M, Kaneko Y, Nishizawa T, Nakajima N, Tamaoki M, Kubo A, Saji H (2012) Seeds of a possible natural hybrid between herbicide-resistant Brassica napus and Brassica rapa detected on a riverbank in Japan. GM Crops 2:201–210. CrossRefGoogle Scholar
  6. Busi R, Powles SB (2016) Transgenic glyphosate-resistant canola (Brassica napus) can persist outside agricultural fields in Australia. Agric Ecosyst Environ 220:28–34. CrossRefGoogle Scholar
  7. Christoffoleti PJ, Galli AJB, Carvalho SJP, Moreira MS, Nicolai M, Foloni LL, Martins BAB, Ribeiro DN (2008) Glyphosate sustainability in South American cropping systems. Pest Manag Sci 64:422–427. CrossRefGoogle Scholar
  8. Clay S, Johnson G (2002) Scouting for weeds. Crop Manag.
  9. Cobb A, Reade J (2010) Herbicides and plant physiology, 2nd edn. Wiley-Blackwell, OxfordCrossRefGoogle Scholar
  10. Crouch JH, Lewis BG, Lydiate DJ, Mithen R (1995) Genetic diversity of wild, weedy and cultivated forms of Brassica rapa. Heredity 74:491–496. CrossRefGoogle Scholar
  11. Devos Y, De Schrijver A, Reheul D (2008) Quantifying the introgressive hybridisation propensity between transgenic oilseed rape and its wild/weedy relatives. Environ Monit Assess 149:303–322. CrossRefGoogle Scholar
  12. Devos Y, Hails RS, Messéan A, Perry JN, Squire GR (2012) Feral genetically modified herbicide tolerant oilseed rape from seed import spills: are concerns scientifically justified? Transgenic Res 21:1–21. CrossRefGoogle Scholar
  13. Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW (2016) Infostat versión 2016. Grupo InfoStat, FCA-Universidad Nacional de Córdoba, CórdobaGoogle Scholar
  14. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15. Google Scholar
  15. Evans JA, Tranel PJ, Hager AG, Schutte B, Wu C, Chatman LA, Davis AS (2016) Managing the evolution of herbicide resistance. Pest Manag Sci 72:74–80. CrossRefGoogle Scholar
  16. FAOSTAT (2016) Food and agriculture Organization of the United Nations. Accessed 19 Dec 2016
  17. FitzJohn RG, Armstrong TT, Newstrom-Lloyd LE, Wilton AD, Cochrane M (2007) Hybridisation within Brassica and allied genera: evaluation of potential for transgene escape. Euphytica 158:209–230. CrossRefGoogle Scholar
  18. Friesen L, Nelson A, Van Acker R (2003) Evidence of contamination of pedigree canola (Brassica napus) seedlots in western Canada from genetically engineered herbicide resistance traits. Agron J 95:1342–1347CrossRefGoogle Scholar
  19. Gomez-Campo C, Prakash S (1999) Origin and domestication. In: Gomez-Campo C (ed) Biology of Brassica coenospecies. Elsevier Science, Madrid, pp 33–58CrossRefGoogle Scholar
  20. Gulden RH, Warwick SI, Thomas AG (2008) The biology of Canadian weeds. 137. Brassica napus L. and B. rapa L. Can J Plant Sci 88:951–996. CrossRefGoogle Scholar
  21. Gupta S, Pratap A (2007) History, origin, and evolution. In: Gupta S (ed) Advances in botanical research, Rapeseed breeding, first edit., vol 45. Academic Press - Elsevier Ltd., San Diego, pp 1–20Google Scholar
  22. Hall L, Topinka K, Huffman J, Davis L, Good A (2000) Pollen flow between herbicide-resistant Brassica napus is the cause of multiple-resistant B. napus volunteers. Weed Sci 48:688–694.[0688:PFBHRB]2.0.CO;2 CrossRefGoogle Scholar
  23. Hecht M, Oehen B, Schulze J, Brodmann P, Bagutti C (2014) Detection of feral GT73 transgenic oilseed rape (Brassica napus) along railway lines on entry routes to oilseed factories in Switzerland. Environ Sci Pollut Res Int 21:1455–1465. CrossRefGoogle Scholar
  24. Ibarra FE (1937) Malezas más comunes del trigo y del lino. In: Almanaque del Ministerio de Agricultura, Buenos Aires, pp 405–410Google Scholar
  25. IBPGR (International Board for Plant Genetic Resources) (1990) Descriptors for Brassica and Raphanus. RomeGoogle Scholar
  26. INASE (Instituto Nacional de Semillas) (2007) Resolución 305/2007: Prohíbe la importación de colza portadora de eventos transgénicos no autorizados para su producción y comercialización en la República Argentina. http://wwwinasegovar/indexphp?option=com_remository&Itemid=102&func=fileinfo&id=547. Accessed 20 Mar 2017
  27. INASE (Instituto Nacional de Semillas) (2016) Catálogo Nacional de Cultivares Accessed 12 Dec 2016
  28. Iniguez-Luy F, Federico M (2011) The genetics of Brassica napus. In: Schmidt R, Bancroft I (eds) Genetics and genomics of the Brassicaceae. Springer, Berlin, pp 33–66Google Scholar
  29. Iriarte L (2015) Cultivo de colza: comportamiento varietal y manejo, XXIII Congreso AAPRESID http://2015congresoaapresidorgar/wp-content/uploads/Iriarte-Liliana-Actapdf. Accessed 06 Mar 2016
  30. Iriarte L, Valetti O (2008) Cultivo de Colza. Chacra Experimental Integrada Barrow, Convenio MAAyP-INTA, Tres ArroyosGoogle Scholar
  31. ISAAA (International Service for the Acquisition of Agri-Biotech Applications) (2016) Global status of commercialized biotech/GM crops: 2016. ISAAA brief no. 52. ISAAA, IthacaGoogle Scholar
  32. Jorgensen R, Andersen B (1994) Spontaneous hybridization between oilseed rape (Brassica napus) and weedy B. campestris (Brassicaceae): a risk of growing genetically modified oilseed rape. Am J Bot 81:1620–1626CrossRefGoogle Scholar
  33. Knispel AL, McLachlan SM, Van Acker RC, Friesen LF (2008) Gene flow and multiple herbicide resistance in escaped canola populations. Weed Sci 56:72–80. CrossRefGoogle Scholar
  34. Kumar A, Salisbury PA, Gurung AM, Barbetti MJ (2015) Importance and origin. In: Kumar A, Banga SS, Meena PD, Kumar PR (eds) Brassica oilseeds: breeding and management. CABI International, Oxfordshire, pp 1–10CrossRefGoogle Scholar
  35. Linnaeus C (1753) Species plantarum, vol 2, p 666 http://wwwbiodiversitylibraryorg/item/13830#page/108/mode/1up. Accessed 20 Mar 2017
  36. Martinez-Laborde JB (1999) Brassicaceae. In: Zuloaga FO, Morrone O (eds) Catálogo de las Plantas Vasculares de la Argentina. Dycotyledoneae Monogr Syst Bot Missouri Bot Gard 74:1–1246Google Scholar
  37. Marzocca A, Marisco O, Del Puerto O (1976) Manual de Malezas, 3rd edn. Hemisferio Sur, Buenos AiresGoogle Scholar
  38. Mazzara M, Grazioli E, Savini C, Van den Eede G (2007) Event specific method for the quantitation of oilseed rape line RT73 using real-time PCR. ItalyGoogle Scholar
  39. MinAgro (Ministerio de Agroindustria) (2016) Datos Abiertos Agroindustria. Accessed 12 Dec 2016
  40. Monsanto Biotechnology Regulatory Sciences (2004) A recommended procedure for real-time quantitative TaqMan PCR for Roundup Ready® canola RT73Google Scholar
  41. Mueller-Dombois D, Ellemberg H (1974) Aims and methods of vegetation ecology, 1st edn. Wiley, New York 547 pGoogle Scholar
  42. Mulligan G (1995) Key to the Brassicaceae (cruciferae) of Canada and Alaska. Agriculture Canada, OttawaGoogle Scholar
  43. Nagaharu U (1935) Genome-analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Japanese J Bot 7:389–452Google Scholar
  44. Pandolfo CE, Presotto A, Carbonell FT, Ureta S, Poverene M, Cantamutto M (2016) Transgenic glyphosate-resistant oilseed rape (Brassica napus) as an invasive weed in Argentina: detection, characterization, and control alternatives. Environ Sci Pollut Res.
  45. Pascale N (1976) Colza. Su cultivo, mejoramiento y usos. In: Kugler W (ed), Enciclopedia Argentina de Agricultura y Jardineria – Tomo II. Editorial Acme (2da edicion), Buenos AiresGoogle Scholar
  46. Patiño VM (1963) Plantas cultivadas y animales domésticos en América Equinoccial IV: Plantas introducidas. Editorial Imprenta Departamental, CaliGoogle Scholar
  47. Prakash S, Wu X, Bhat SR (2012) History, evolution, and domestication of Brassica crops. In: Plant breeding reviews. Wiley, Hoboken, pp 19–84Google Scholar
  48. R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna Google Scholar
  49. Ritz C (2010) Toward a unified approach to dose-response modeling in ecotoxicology. Environ Toxicol Chem 29:220–229. CrossRefGoogle Scholar
  50. SAGPyA (Secretaría de Agricultura, Ganadería, Pesca y Alimentación) (1997) Solicitud de ensayo a campo de canola tolerante al herbicida glifosato. Resolución N° 228Google Scholar
  51. Saji H, Nakajima N, Aono M, Tamaoki M, Kubo A, Wakiyama S, Hatase Y, Nagatsu M (2005) Monitoring the escape of transgenic oilseed rape around Japanese ports and roadsides. Environ Biosaf Res 4:217–222. CrossRefGoogle Scholar
  52. Schafer MG, Ross AA, Londo JP, Burdick CA, Lee EH, Travers SE, Van de Water PK, Sagers CL (2011) The establishment of genetically engineered canola populations in the U.S. PLoS One 6:e25736. CrossRefGoogle Scholar
  53. Schoenenberger N, D’Andrea L (2012) Surveying the occurrence of subspontaneous glyphosate-tolerant genetically engineered Brassica napus L. (Brassicaceae) along Swiss railways. Environ Sci Eur 24:23. CrossRefGoogle Scholar
  54. Schulze J, Brodmann P, Oehen B, Bagutti C (2015) Low level impurities in imported wheat are a likely source of feral transgenic oilseed rape (Brassica napus L.) in Switzerland. Environ Sci Pollut Res 22:16936–16942. CrossRefGoogle Scholar
  55. Simard M-J, Légère A, Warwick SI (2006) Transgenic Brassica napus fields and Brassica rapa weeds in Quebec: sympatry and weed-crop in situ hybridization. Can J Bot 84:1842–1851. CrossRefGoogle Scholar
  56. Snapp SS, Swinton SM, Labarta R, Mutch D, Black JR, Leep R, Nyiraneza J, O’Neil K (2005) Evaluating cover crops for benefits, costs and performance within cropping system niches. Agron J 97(1):322–332.
  57. Snow A, Andersen B, Jørgensen R (1999) Costs of transgenic herbicide resistance introgressed from Brassica napus into weedy B. rapa. Mol Ecol 8:605–615CrossRefGoogle Scholar
  58. Suwabe K, Iketani H, Nunome T, Kage T, Hirai M (2002) Isolation and characterization of microsatellites in Brassica rapa L. Theor Appl Genet 104:1092–1098. CrossRefGoogle Scholar
  59. Tenembaum J (1937) El Nabo. Su cultivo en el país. In: Almanaque del Ministerio de Agricultura, Buenos Aires, pp 329–334Google Scholar
  60. Vila-Aiub MM, Vidal RA, Balbi MC, Gundel PE, Trucco F, Ghersa CM (2008) Glyphosate-resistant weeds of South American cropping systems: an overview. Pest Manag Sci 64:366–371. CrossRefGoogle Scholar
  61. Warwick SI, Simard M-J, Légère A, Beckie HJ, Braun L, Zhu B, Mason P, Séguin-Swartz G, Stewart CN (2003) Hybridization between transgenic Brassica napus L. and its wild relatives: Brassica rapa L., Raphanus raphanistrum L., Sinapis arvensis L., and Erucastrum gallicum (Willd.) O.E. Schulz. Theor Appl Genet 107:528–539. CrossRefGoogle Scholar
  62. Warwick SI, Légère A, Simard M-J, James T (2008) Do escaped transgenes persist in nature? The case of an herbicide resistance transgene in a weedy Brassica rapa population. Mol Ecol 17:1387–1395. CrossRefGoogle Scholar
  63. Wu C, Davis AS, Tranel PJ (2017) Limited fitness costs of herbicide-resistance traits in Amaranthus tuberculatus facilitate resistance evolution. Pest Manag Sci.
  64. Yoshimura Y, Beckie HJ, Matsuo K (2006) Transgenic oilseed rape along transportation routes and port of Vancouver in western Canada. Environ Biosaf Res 5:67–75. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Claudio E. Pandolfo
    • 1
    • 2
    Email author
  • Alejandro Presotto
    • 1
    • 2
  • Francisco Torres Carbonell
    • 1
  • Soledad Ureta
    • 1
    • 2
  • Mónica Poverene
    • 1
    • 2
  • Miguel Cantamutto
    • 1
    • 3
  1. 1.Dpto. AgronomíaUniversidad Nacional del Sur (UNS)Bahía BlancaArgentina
  2. 2.Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS)Universidad Nacional del Sur-CONICETBahía BlancaArgentina
  3. 3.Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario AscasubiHilario AscasubiArgentina

Personalised recommendations