Environmental Science and Pollution Research

, Volume 25, Issue 4, pp 3681–3694 | Cite as

Assessment of water resource contamination by pesticides in vegetable-producing areas in Burkina Faso

  • Edouard Lehmann
  • Morgan Fargues
  • Jean-Jacques Nfon Dibié
  • Yacouba Konaté
  • Luiz Felippe de Alencastro
Research Article


This study proposes a comprehensive approach to investigate water resource contamination by pesticides under the specific climatic and hydrological conditions of the Sudano-Sahelian climate. Samples were collected from traditional wells, boreholes, and a lake in Burkina Faso. A multiresidue analysis was developed for 25 pesticides identified during field surveys. Polar organic chemical integrative samplers (POCIS) were used to confirm trends observed with grab samples. Uptake kinetics of POCIS were assessed by in situ calibration. The proposed use of nonlinear least squares regression proved to be a robust approach for estimating time-weighted average concentration in cases of nonlinear uptake. High sampling rates for triazines in a quasi-stagnant lake were attributed to warm water temperatures (30.8 ± 1.3 °C). The combination of sampling techniques during a 3-year monitoring period allowed for identifying potential interactions between resources, seasonal patterns, and origins of contaminants. Atrazine, azadirachtin, carbofuran, chlorpyrifos, cypermethrin, dieldrin, imidacloprid, and profenofos exceeded 0.1 μg L−1, indicating a potential risk for the consumers. Ecological risk assessment was performed using the Pesticide Tool Index for fish, cladocerans, and benthic invertebrates. Peak concentrations of cypermethrin and chlorpyrifos were systematically associated with hazard to the studied taxa.


Market gardening Pesticide residues POCIS PRC Risk assessment Multiresidue analysis GC-MS UPLC-MS/MS 



We thank Dominique Grandjean for his participation in the method development and his skillful technical assistance on the project. We thank Boukary Sawadogo and Nadiah Congo for their assistance during the field and laboratory work in Burkina Faso. We thank Nicolas Estoppey and Sandrine Biau-Lalanne for their support and advice regarding methodology and data interpretation. Finally, we particularly acknowledge the Swiss Agency for Development and Cooperation (SDC) for financing the present research through the 3E program.

Supplementary material

11356_2017_665_MOESM1_ESM.docx (864 kb)
ESM 1 (DOCX 864 kb)


  1. Arenas-Sánchez A, Rico A, Vighi M (2016) Effects of water scarcity and chemical pollution in aquatic ecosystems: state of the art. Sci Total Environ 572:390–403. CrossRefGoogle Scholar
  2. ATSDR (2015) Toxicological Profile for Endosulfan. pp 1–376Google Scholar
  3. ATSDR (2005) Toxicological profile for alpha-, beta-, gamma-, and Delta-Hexachlorocyclohexane. pp 1–377Google Scholar
  4. Bassole D, Ouédraogo L (2007) Problématique de l’utilisation des produits phytosanitaires en conservation des denrées alimentaires et en maraîchage urbain et péri urbain au Burkina Faso: cas de Bobo Dioulasso, Ouahigouya et Ouagadougou. Association des Professionnels de l’Irrigation (APIPAC), International Fertilizer Development Center (IFDC). 1-51. [WWW Document]. URL (accessed 1.1.17)
  5. Belles A (2012) Developpement et applicartions environnementales des échantillonneurs passifs pour la surveillance des écosystèmes aquatiques. Université Bordeaux 1, LPTC/EPOC UMR 5805 CNRS, University of Bordeaux 1, 351 crs de la Liberation, 33405 Talence cedex FranceGoogle Scholar
  6. Carpinteiro I, Schopfer A, Estoppey N, Fong C, Grandjean D, De Alencastro LF (2016) Evaluation of performance reference compounds (PRCs) to monitor emerging polar contaminants by polar organic chemical integrative samplers (POCIS) in rivers. Anal Bioanal Chem 408:1067–1078. CrossRefGoogle Scholar
  7. Directive 98/83/EC (1998) Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption. OJ L 330:32–54Google Scholar
  8. Gomgnimbou APK, Savadogo PW, Nianogo AJ, Millogo-rasolodimby J (2009) Usage des intrants chimiques dans un agrosystème tropical: diagnostic du risque de pollution environnementale dans la région cotonnière de l’est du Burkina Faso. Biotechnol Agron Société Environ 13:499–507Google Scholar
  9. Gupta S, Gajbhiye VT (2007) Persistence of acetamiprid in soil. Bull Environ Contam Toxicol 78:349–352. CrossRefGoogle Scholar
  10. Harman C, Allan IJ, Vermeirssen ELM (2012) Calibration and use of the polar organic chemical integrative sampler-a critical review. Environ Toxicol Chem 31:2724–2738. CrossRefGoogle Scholar
  11. Harman C, Grung M, Djedjibegovic J, Marjanovic A, Sober M, Sinanovic K, Fjeld E, Rognerud S, Ranneklev SB, Larssen T (2013) Screening for Stockholm convention persistent organic pollutants in the Bosna River (Bosnia and Herzogovina). Environ Monit Assess 185:1671–1683. CrossRefGoogle Scholar
  12. Huckins JN, Manuweera GK, Petty JD, Mackay D, Lebo JA, Hucklns JN, Manuweera JGK, Petty JD, Mackay D, Lebot JA (1993) Lipid-containing semipermeable membrane devices for monitoring organic contaminants in water. Environ. Sci. Technol. 27:2489–2496. CrossRefGoogle Scholar
  13. Ibrahim I, Togola A, Gonzalez C (2013a) Polar organic chemical integrative sampler (POCIS) uptake rates for 17 polar pesticides and degradation products: laboratory calibration. Environ Sci Pollut Res 20:3679–3687. CrossRefGoogle Scholar
  14. Ibrahim I, Togola A, Gonzalez C (2013b) In-situ calibration of POCIS for the sampling of polar pesticides and metabolites in surface water. Talanta 116:495–500. CrossRefGoogle Scholar
  15. Ilboudo S, Toé AM, Ouédraogo R, Ouédraogo M (2014) Ecological risk assessment of pesticide residues in water from desert locust area in Burkina Faso. Res J Environ Earth Sci 6:227–232Google Scholar
  16. Kouzayha A, Al Ashi A, Al Akoum R, Al Iskandarani M, Budzinski H, Jaber F (2013) Occurrence of pesticide residues in Lebanon’s water resources. Bull Environ Contam Toxicol 91:503–509. CrossRefGoogle Scholar
  17. Leboulanger C, Bouvy M, Pagano M, Dufour R-A, Got P, Cecchi P (2009) Responses of planktonic microorganisms from tropical reservoirs to Paraquat and Deltamethrin exposure. Arch Environ Contam Toxicol 56:39–51. CrossRefGoogle Scholar
  18. Lewis KA, Tzilivakis J, Warner DJ, Green A (2016) An international database for pesticide risk assessments and management. Hum Ecol Risk Assess An Int J 22:1050–1064. CrossRefGoogle Scholar
  19. Lissalde S, Mazzella N, Fauvelle V, Delmas F, Mazellier P, Legube B (2011) Liquid chromatography coupled with tandem mass spectrometry method for thirty-three pesticides in natural water and comparison of performance between classical solid phase extraction and passive sampling approaches. J Chromatogr A 1218:1492–1502. CrossRefGoogle Scholar
  20. Lissalde S, Mazzella N, Mazellier P (2014) Polar organic chemical integrative samplers for pesticides monitoring: impacts of field exposure conditions. Sci Total Environ 488–489:188–196. CrossRefGoogle Scholar
  21. Lohmann R, Booij K, Smedes F, Vrana B (2012) Use of passive sampling devices for monitoring and compliance checking of POP concentrations in water. Environ Sci Pollut Res Int 19:1885–1895. CrossRefGoogle Scholar
  22. MAHRH (2007) Analyse de la filière maraichage au Burkina Faso - Ministère de l’agriculture, de l’hydraulique et des ressources halieutiques, Secrétariat général. 1-127. [WWW Document]. URL (accessed 1.1.17)
  23. Martínez Bueno MJ, Hernando MD, Agüera A, Fernández-Alba AR (2009) Application of passive sampling devices for screening of micro-pollutants in marine aquaculture using LC-MS/MS. Talanta 77:1518–1527. CrossRefGoogle Scholar
  24. Mazzella N, Dubernet JF, Delmas F (2007) Determination of kinetic and equilibrium regimes in the operation of polar organic chemical integrative samplers. Application to the passive sampling of the polar herbicides in aquatic environments. J Chromatogr A 1154:42–51. CrossRefGoogle Scholar
  25. Mazzella N, Lissalde S, Moreira S, Delmas F, Mazellier P, Huckins JN (2010) Evaluation of the use of performance reference compounds in an oasis-HLB adsorbent based passive sampler for improving water concentration estimates of polar herbicides in freshwater. Environ Sci Technol 44:1713–1719. CrossRefGoogle Scholar
  26. McKnight US, Rasmussen JJ, Kronvang B, Binning PJ, Bjerg PL (2015) Sources, occurrence and predicted aquatic impact of legacy and contemporary pesticides in streams. Environ Pollut 200:64–76. CrossRefGoogle Scholar
  27. Michel A (2005) Etude de la qualité des eaux dans le réservoir de Loumbila (Burkina Faso). Université Paris 7 - Denis Diderot - Institut de recherche pour le développement (IRD). Paris, UE 39U8SPR3 – Licence Génie de l’Environnement (2004-2005), pp 1-38Google Scholar
  28. MOAD (2013) Études techniques détaillées des travaux de construction et de bitumage des voies d’accès de l’aéroport international de Ouagadougou-Donsin. 1-421. [WWW Document]. URL (accessed 8.13.17)
  29. Morin N, Miège C, Coquery M, Randon J (2012) Chemical calibration, performance, validation and applications of the polar organic chemical integrative sampler (POCIS) in aquatic environments. TrAC - Trends Anal Chem 36:144–175. CrossRefGoogle Scholar
  30. Nowell LH, Norman JE, Moran PW, Martin JD, Stone WW (2014) Pesticide toxicity index-a tool for assessing potential toxicity of pesticide mixtures to freshwater aquatic organisms. Sci Total Environ 476–477:144–157. CrossRefGoogle Scholar
  31. Ouédraogo M, Tankoano A, Ouédraogo TZ, Guissou IP (2009) Étude des facteurs de risques d’intoxication chez les utilisateurs de pesticides dans les exploitations cotonnières de Fada N’Gourma. Environnement, Risque & Santé 8:1–5Google Scholar
  32. Ouédraogo M, Toé AM, Ouédraogo TZ, Guissou PI (2011) Pesticides in Burkina Faso : overview of the situation in a Sahelian African country. In: Stoytcheva MD (ed) pesticides in the modern world—pesticides use and management, pp 1–15. Google Scholar
  33. Pesce S, Morin S, Lissalde S, Montuelle B, Mazzella N (2011) Combining polar organic chemical integrative samplers (POCIS) with toxicity testing to evaluate pesticide mixture effects on natural phototrophic biofilms. Environ Pollut 159:735–741. CrossRefGoogle Scholar
  34. Pimentel D (1995) Amounts of pesticides reaching target pests: environmental impacts and ethics. J Agric Environ Ethics 8:17–29CrossRefGoogle Scholar
  35. Qu CS, Chen W, Bi J, Huang L, Li FY (2011) Ecological risk assessment of pesticide residues in Taihu Lake wetland, China. Ecol Model 222:287–292. CrossRefGoogle Scholar
  36. Savadogo PW, Traoré O, Mariam T, Tapsoba KH, Sedogo PM, Bonzi-Coulibaly LY (2006) Variation de la teneur en résidus de pesticides dans les sols de la zone cotonnière du Burkina Faso. J Africain des Sci l’Environnement 1:29–39Google Scholar
  37. Sawadogo LM (2012) Utilisation des pesticides dans les cultures Maraîchères en zone urbaine et périurbaine de Ouagadougou : Etude des risques toxicologiques. Université de Ouagadougou, Thèse N°073Google Scholar
  38. Thomatou Α-Α, Zacharias I, Hela D, Konstantinou I (2011) Passive sampling of selected pesticides in aquatic environment using polar organic chemical integrative samplers. Environ Sci Pollut Res 18:1222–1233. CrossRefGoogle Scholar
  39. Toé AM (2010) Rapport d’Etude d’impact environnemental et social pour la construction d’un magasin de stockage de pesticides à Aribinda (province du Soum). Ministère de l’agriculture de l’hydraulique et des ressources halieutiques; Secrétariat Général; Direction générale des productions végétales; Projet d’urgence de lutte contre le criquet pèlerin en Afrique (EV1190V17), pp 1-69Google Scholar
  40. Toé AM (2010) Étude pilote des intoxications dues aux pesticides agricoles au Burkina Faso (Final Report). Secrétariat de la Convention de Rotterdam; FAO, pp 1-94Google Scholar
  41. U.S. Environmental Protection Agency (2012) Estimation Programs Interface Suite™ for Microsoft® Windows, v 4.11Google Scholar
  42. U.S. Environmental Protection Agency (2009) Memorandum. Section 3 request for a new use of the insecticide emamectin benzoate (PC Code 122806). U.S. environmental protection agency, office of pesticide programs environmental fate and effects division environmental risk branch 3:1-31Google Scholar
  43. Vermeirssen ELM, Dietschweiler C, Escher BI, Van Der Voet J, Hollender J (2013) Uptake and release kinetics of 22 polar organic chemicals in the Chemcatcher passive sampler. Anal Bioanal Chem 405:5225–5236. CrossRefGoogle Scholar
  44. Vrana B, Allan IJ, Greenwood R, Mills G a, Dominiak E, Svensson K, Knutsson J, Morrison G (2005) Passive sampling techniques for monitoring pollutants in water. TrAC Trends Anal Chem 24:845–868. CrossRefGoogle Scholar
  45. WHO and UNEP (2013) State of the science of endocrine disruption chemicals - 2012, an assessment of the state of the science of endocrine disruptors prepared by a group of experts fro the United Nations Environment Programme (UNEP) ad World Health Organization (WHO), edited by Åke Bergman, Jerrold J. Heindel, Susan Jobling, Karen A. Kidd and R. Thomas Zoeller. 1-289. [WWW Document]. URL (accessed 8.13.17).Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.École Polytechnique Fédérale de Lausanne, Central Environmental LaboratoryLausanneSwitzerland
  2. 2.Laboratoire Eau, Dépollution, Écosystèmes et SantéInstitut International d’Ingénierie de l’Eau et de l’EnvironnementOuagadougou 01Burkina Faso

Personalised recommendations