Advertisement

Environmental Science and Pollution Research

, Volume 25, Issue 3, pp 2476–2494 | Cite as

Natural and anthropogenic particulate-bound aliphatic and polycyclic aromatic hydrocarbons in surface waters of the Gulf of Gabès (Tunisia, southern Mediterranean Sea)

  • Rania Fourati
  • Marc Tedetti
  • Catherine Guigue
  • Madeleine Goutx
  • Hatem Zaghden
  • Sami Sayadi
  • Boubaker Elleuch
Research Article

Abstract

Particulate-bound aliphatic and polycyclic aromatic hydrocarbons (AHs and PAHs) were investigated in the surface waters of the Gulf of Gabès (Tunisia, southern Mediterranean Sea). Samples were collected off the Sfax and Gabès-Ghannouch coasts. Concentrations in total resolved n-alkanes ranged from 0.03 to 3.2 μg L−1, and concentrations in total parents + alkylated PAHs ranged from bdl to 108.6 ng L−1. The highest concentrations were recorded in the southern Sfax. AHs were mainly of biogenic origin with odd n-alkane predominance, although an anthropogenic contribution was also detected. The PAH molecular patterns revealed a mixed origin with the presence of low molecular weight and alkylated compounds, characteristic of uncombusted oil-derived products, and the presence of high molecular weight compounds, typical of combustion residues. Rainfall events induced an increase in PAH concentrations by a factor 1.5–23.5. The particle-water partition coefficients (Koc) suggest that the partitioning of PAHs between the particulate and dissolved phases is driven by hydrophobicity and organic matter composition.

Keywords

Hydrocarbons Coastal waters Particles Organic matter Partition coefficient Gulf of Gabès Mediterranean Sea 

Notes

Acknowledgements

We acknowledge the “Institut de recherche pour le développement” (IRD) for providing scholarship to R. Fourati through the “Allocations de Recherche pour une Thèse au Sud” (ARTS) program, as well as the Tunisian Ministry of Higher Education and Scientific Research for its financial support. This study was carried out in the framework of the IRD Action South project “MANGA” and the IRD French-Tunisian International Joint Laboratory (LMI) “COSYS-Med”, and is a contribution to the WP3 C3A-Action MERMEX/MISTRALS. We are grateful to Z. Drira from the laboratory of Biodiversity and Aquatic Ecosystems (Faculty of Sciences, University of Sfax), as well as H. Sahnoun and T. Omar for their technical help during cruises. We thank the core parameter analytical platform (PAPB) of the Mediterranean Institute of Oceanography (MIO) for performing biogeochemical analyses, and R. Sempéré for the use of the Agilent GC-MS.

Supplementary material

11356_2017_641_MOESM1_ESM.docx (9.3 mb)
ESM 1 (DOCX 9564 kb).

References

  1. Adhikari PL, Maiti K, Overton EB (2015) Vertical fluxes of polycyclic aromatic hydrocarbons in the northern Gulf of Mexico. Mar Chem 168:60–68.  https://doi.org/10.1016/j.marchem.2014.11.001 CrossRefGoogle Scholar
  2. Akkanen J, Tuikka A, Kukkonen JVK (2012) On the borderline of dissolved and particulate organic matter: partitioning and bioavailability of polycyclic aromatic hydrocarbons. Ecotoxicol Environ Saf 78:91–98.  https://doi.org/10.1016/j.ecoenv.2011.11.010 CrossRefGoogle Scholar
  3. Alaya-Ltifi L, Selmi S (2014) Passerine abundance and diversity in a polluted oasis habitat in south-eastern Tunisia. Eur J Wildl Res 60:535–541.  https://doi.org/10.1007/s10344-014-0817-0 CrossRefGoogle Scholar
  4. Aloulou F, Kallel M, Dammak M, Elleuch B, Saliot A (2010) Even-numbered n-alkanes/n-alkenes predominance in surface sediments of Gabes Gulf in Tunisia. Environ Earth Sci 61:1–10.  https://doi.org/10.1007/s12665-009-0315-y CrossRefGoogle Scholar
  5. Aloulou F, Elleuch B, Kallel M (2012) Benthic foraminiferal assemblages as pollution proxies in the northern coast of Gabes Gulf, Tunisia. Environ Monit Assess 184:777–795.  https://doi.org/10.1007/s10661-011-2001-2 CrossRefGoogle Scholar
  6. Amorri J, Geffroy-Rodier C, Boufahja F, Mahmoudi E, Aïssa P, Ksibi M, Amblès A (2011) Organic matter compounds as source indicators and tracers for marine pollution in a western Mediterranean coastal zone. Environ Sci Pollut Res 18:1606–1616.  https://doi.org/10.1007/s11356-011-0522-4 CrossRefGoogle Scholar
  7. Asia L, Mazouz S, Guiliano M, Doumenq P, Mille G (2009) Occurrence and distribution of hydrocarbons in surface sediments from Marseille Bay (France). Mar Pollut Bull 58:443–451.  https://doi.org/10.1016/j.marpolbul.2008.11.022 CrossRefGoogle Scholar
  8. Azri C, Tili A, Serbaji MM, Medhioub K (2002) Etude des résidus de combustion des fuels liquide et solide et de traitement chimique du phosphate brut dans la ville de Sfax (Tunisie). Pollut Atm 44:297–308Google Scholar
  9. Baker JE, Eisenreich SJ, Eadie BJ (1991) Sediment trap fluxes and benthic recycling of organic carbon, polycyclic aromatic hydrocarbons, and polychlorobiphenyl congeners in Lake Superior. Environ Sci Technol 25:500–509.  https://doi.org/10.1021/es00015a019 CrossRefGoogle Scholar
  10. Béjaoui B, Rais S, Koutitonsky V (2004) Modélisation de la dispersion du phosphogypse dans le golfe de Gabès. Bull Inst Nat Sci Tech Mer Salammbô 31:103–109Google Scholar
  11. Bel Hassen M, Drira Z, Hamza A, Ayadi H, Akrout F, Issaoui H (2008) Summer phytoplankton pigments and community composition related to water mass properties in the Gulf of Gabes. Estuar Coast Shelf Sci 77:645–656.  https://doi.org/10.1016/j.ecss.2007.10.027 CrossRefGoogle Scholar
  12. Bel Hassen M, Drira Z, Hamza A, Ayadi H, Akrout F, Messaoudi S, Issaoui H, Aleya L, Bouaïn A (2009) Phytoplankton dynamics related to water mass properties in the Gulf of Gabes: ecological implications. J Mar Syst 75:216–226.  https://doi.org/10.1016/j.jmarsys.2008.09.004 CrossRefGoogle Scholar
  13. Ben Amor R, Gueddari M (2016) Major ion geochemistry of Ghannouch–Gabes coastline (at Southeast Tunisia, Mediterranean Sea): study of the impact of phosphogypsum discharges by geochemical modeling and statistical analysis. Environ Earth Sci 75:851.  https://doi.org/10.1007/s12665-016-5666-6 CrossRefGoogle Scholar
  14. Berrojalbiz N, Dachs J, Ojeda MJ, Valle MC, Castro-Jiménez J, Wollgast J, Ghiani M, Hanke G, Zaldivar JM (2011) Biogeochemical and physical controls on concentrations of polycyclic aromatic hydrocarbons in water and plankton of the Mediterranean and Black Seas. Glob Biogeochem Cycles 25:1–14.  https://doi.org/10.1029/2010GB003775 CrossRefGoogle Scholar
  15. Bligh E, Dyer W (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917CrossRefGoogle Scholar
  16. Blumer M, Guillard RRL, Chase T (1971) Hydrocarbons of marine phytoplankton. Mar Biol 8:183–189.  https://doi.org/10.1007/BF00355214 CrossRefGoogle Scholar
  17. Bouloubassi I, Saliot A (1991) Composition and sources of dissolved and particulate PAH in surface waters from the Rhone delta (NW Mediterranean). Mar Pollut Bull 22:588–594.  https://doi.org/10.1016/0025-326X(91)90246-O CrossRefGoogle Scholar
  18. Bouloubassi I, Saliot A (1993) Dissolved, particulate and sedimentary naturally derived polycyclic aromatic hydrocarbons in a coastal environment: geochemical significance. Mar Chem 42:127–143.  https://doi.org/10.1016/0304-4203(93)90242-G CrossRefGoogle Scholar
  19. Bouloubassi I, Méjanelle L, Pete R, Fillaux J, Lorre A, Point V (2006) PAH transport by sinking particles in the open Mediterranean Sea: a 1 year sediment trap study. Mar Pollut Bull 52:560–571.  https://doi.org/10.1016/j.marpolbul.2005.10.003 CrossRefGoogle Scholar
  20. Bourbonniere RA, Meyers PA (1996) Sedimentary geolipid records of historical changes in the watersheds and productivities of Lakes Ontario and Erie. Limnol Oceanogr 41:352–359.  https://doi.org/10.4319/lo.1996.41.2.0352 CrossRefGoogle Scholar
  21. Broman D, Naef C, Rolff C, Zebuehr Y (1991) Occurrence and dynamics of polychlorinated dibenzo-p-dioxins and dibenzofurans and polycyclic aromatic hydrocarbons in the mixed surface layer of remote coastal and offshore waters of the Baltic. Environ Sci Technol 25:1850–1864.  https://doi.org/10.1021/es00023a002 CrossRefGoogle Scholar
  22. Budzinski H, Jones I, Bellocq J, Piérard C, Garrigues P (1997) Evaluation of sediment contamination by polycyclic aromatic hydrocarbons in the Gironde estuary. Mar Chem 58:85–97.  https://doi.org/10.1016/S0304-4203(97)00028-5 CrossRefGoogle Scholar
  23. Castro-Jiménez J, Berrojalbiz N, Wollgast J, Dachs J (2012) Polycyclic aromatic hydrocarbons (PAHs) in the Mediterranean Sea: atmospheric occurrence, deposition and decoupling with settling fluxes in the water column. Environ Pollut 166:40–47.  https://doi.org/10.1016/j.envpol.2012.03.003 CrossRefGoogle Scholar
  24. Chen J, Henderson G, Grimm CC, Lloyd SW, Laine RA (1998) Termites fumigate their nests with naphthalene. Nature 392:558–559.  https://doi.org/10.1038/33305 CrossRefGoogle Scholar
  25. Cincinelli A, Stortini AM, Perugini M, Checchini L, Lepri L (2001) Organic pollutants in sea-surface microlayer and aerosol in the coastal environment of Leghorn—(Tyrrhenian Sea). Mar Chem 76:77–98.  https://doi.org/10.1016/S0304-4203(01)00049-4 CrossRefGoogle Scholar
  26. Cincinelli A, Martellini T, Bittoni L, Russo A, Gambaro A, Lepri L (2008) Natural and anthropogenic hydrocarbons in the water column of the Ross Sea (Antarctica). J Mar Syst 73:208–220.  https://doi.org/10.1016/j.jmarsys.2007.10.010 CrossRefGoogle Scholar
  27. Colombo JC, Pelletier E, Brochu C, Khallil M, Catoggio JA (1989) Determination of hydrocarbon sources using n-alkane and polyaromatic hydrocarbon distribution indexes. Case study: Rio de la Plata estuary, Argentina. Environ Sci Technol 23:888–894.  https://doi.org/10.1021/es00065a019 CrossRefGoogle Scholar
  28. Commendatore MG, Esteves JL (2004) Natural and anthropogenic hydrocarbons in sediments from the Chubut River (Patagonia, Argentina). Mar Pollut Bull 48:910–918.  https://doi.org/10.1016/j.marpolbul.2003.11.015 CrossRefGoogle Scholar
  29. Commendatore MG, Nievas ML, Amin O, Esteves JL (2012) Sources and distribution of aliphatic and polyaromatic hydrocarbons in coastal sediments from the Ushuaia Bay (Tierra del Fuego, Patagonia, Argentina). Mar Environ Res 74:20–31.  https://doi.org/10.1016/j.marenvres.2011.11.010 CrossRefGoogle Scholar
  30. Cripps GC (1989) Problems in the identification of anthropogenic hydrocarbons against natural background levels in the Antarctic. Antarct Sci 1:307–312.  https://doi.org/10.1017/S0954102089000465 CrossRefGoogle Scholar
  31. Dachs J, Méjanelle L (2010) Organic pollutants in coastal waters, sediments, and biota: a relevant driver for ecosystems during the anthropocene? Estuar Coasts 33:1–14.  https://doi.org/10.1007/s12237-009-9255-8 CrossRefGoogle Scholar
  32. Dachs J, Bayona JM, Fowler SW, Miquel J-C, Albaigés J (1996) Vertical fluxes of polycyclic aromatic hydrocarbons and organochlorine compounds in the western Alboran Sea (southwestern Mediterranean). Mar Chem 52:75–86CrossRefGoogle Scholar
  33. Dachs J, Bayona JM, Fillaux J, Saliot A, Albaiges J (1999) Evaluation of anthropogenic and biogenic inputs into the western Mediterranean using molecular markers. Mar Chem 65:195–210CrossRefGoogle Scholar
  34. Dachs J, Lohmann R, Ockenden WA, Méjanelle L, Eisenreich SJ, Jones KC (2002) Oceanic biogeochemical controls on global dynamics of persistent organic pollutants. Environ Sci Technol 36:4229–4237.  https://doi.org/10.1021/es025724k CrossRefGoogle Scholar
  35. Daoud A, Dahech S (2012) Résilience de l’agglomération de Sfax (Tunisie méridionale) face au changement climatique: essai d’évaluation, Climatologie, numéro spécial “Climats et changement climatique dans les villes.” 109–126. doi: https://doi.org/10.4267/climatologie.738
  36. Dauner ALL, Hernández EA, MacCormack WP, Martins CC (2015) Molecular characterisation of anthropogenic sources of sedimentary organic matter from Potter Cove, King George Island, Antarctica. Sci Total Environ 502:408–416.  https://doi.org/10.1016/j.scitotenv.2014.09.043 CrossRefGoogle Scholar
  37. Del Vento S, Dachs J (2002) Prediction of uptake dynamics of persistent organic pollutants by bacteria and phytoplankton. Environ Toxicol Chem 21:2099–2107.  https://doi.org/10.1002/etc.5620211013 CrossRefGoogle Scholar
  38. Deng H, Peng P, Huang W, Song J (2006) Distribution and loadings of polycyclic aromatic hydrocarbons in the Xijiang River in Guangdong, South China. Chemosphere 64:1401–1411.  https://doi.org/10.1016/j.chemosphere.2005.12.027 CrossRefGoogle Scholar
  39. DGEQV (2008) Etude de dépollution et de réhabilitation des côtes sud de Sfax. PHASE-1 : Inventaire et caractérisation des sources de pollution. Note de synthese. Ministère de l’Environnement et du Développement Durable, SfaxGoogle Scholar
  40. Douglas AG, Eglinton G (1966) The distribution of n-alkane. In: Swain T (ed) Comparative Phytochemistry. Academic Press, London, pp 57–78Google Scholar
  41. Drira Z, Elloumi J, Guermazi W, Bel Hassen M, Hamza A, Ayadi H (2014) Seasonal changes on planktonic diatom communities along an inshore-offshore gradient in the Gulf of Gabes (Tunisia). Acta Ecol Sin 34:34–43.  https://doi.org/10.1016/j.chnaes.2013.11.005 CrossRefGoogle Scholar
  42. Drira Z, Kmiha-Megdiche S, Sahnoun H, Hammami A, Allouche N, Tedetti M, Ayadi H (2016) Assessment of anthropogenic inputs in the surface waters of the southern coastal area of Sfax during spring (Tunisia, Southern Mediterranean Sea). Mar Pollut Bull 104:355–363.  https://doi.org/10.1016/j.marpolbul.2016.01.035 CrossRefGoogle Scholar
  43. Duran R, Cravo-Laureau C (2016) Role of environmental factors and microorganisms in determining the fate of polycyclic aromatic hydrocarbons in the marine environment. FEMS Microbiol Rev 40:814–830.  https://doi.org/10.1093/femsre/fuw031 CrossRefGoogle Scholar
  44. Eggleton J, Thomas KV (2004) A review of factors affecting the release and bioavailability of contaminants during sediment disturbance events. Environ Int 30:973–980.  https://doi.org/10.1016/j.envint.2004.03.001 CrossRefGoogle Scholar
  45. El Nemr A, Abd-Allah AM (2003) Contamination of polycyclic aromatic hydrocarbons (PAHs) in microlayer and subsurface waters along Alexandria coast, Egypt. Chemosphere 52:1711–1716.  https://doi.org/10.1016/S0045-6535(03)00300-X CrossRefGoogle Scholar
  46. Fernandes MB, Sicre MA, Boireau A, Tronczynski J (1997) Polyaromatic hydrocarbon (PAH) distributions in the Seine River and its estuary. Mar Pollut Bull 34:857–867.  https://doi.org/10.1016/S0025-326X(97)00063-5 CrossRefGoogle Scholar
  47. Fourati R, Tedetti M, Guigue C, Goutx M, Garcia N, Zaghden H, Sayadi S, Elleuch B (2017) Sources and spatial distribution of dissolved aliphatic and polycyclic aromatic hydrocarbons in surface coastal waters of the Gulf of Gabès (Tunisia, Southern Mediterranean Sea). Prog Oceanogr.  https://doi.org/10.1016/j.pocean.2017.02.001
  48. Gobas FAPC, Wilcockson JB, Russell RW, Haffner GD (1999) Mechanism of biomagnification in fish under laboratory and field conditions. Environ Sci Technol 33:133–141.  https://doi.org/10.1021/es980681m CrossRefGoogle Scholar
  49. Goutx M, Saliot A (1980) Relationship between dissolved and particulate fatty acids and hydrocarbons, chlorophyll a and zooplankton biomass in Villefranche Bay, Mediterranean Sea. Mar Chem 8:299–318CrossRefGoogle Scholar
  50. Guigue C, Tedetti M, Giorgi S, Goutx M (2011) Occurrence and distribution of hydrocarbons in the surface microlayer and subsurface water from the urban coastal marine area off Marseilles, Northwestern Mediterranean Sea. Mar Pollut Bull 62:2741–2752.  https://doi.org/10.1016/j.marpolbul.2011.09.013 CrossRefGoogle Scholar
  51. Guigue C, Bigot L, Turquet J, Tedetti M, Ferretto N, Goutx M, Cuet P (2015) Hydrocarbons in a coral reef ecosystem subjected to anthropogenic pressures (La Réunion Island, Indian Ocean ). Environ Chem 12:350–365.  https://doi.org/10.1071/en14194 CrossRefGoogle Scholar
  52. Gustafson KE, Dickhut RM (1997) Distribution of polycyclic aromatic hydrocarbons in southern Chesapeake Bay surface water: evaluation of three methods for determining freely dissolved water concentrations. Environ Toxicol Chem 16:452–461.  https://doi.org/10.1002/etc.5620160310 CrossRefGoogle Scholar
  53. Gustafsson Ö, Nilsson N, Bucheli TD (2001) Dynamic colloid−water partitioning of pyrene through a coastal Baltic spring bloom. Environ Sci Technol 35:4001–4006.  https://doi.org/10.1021/es0003019 CrossRefGoogle Scholar
  54. Herbes SE (1977) Partitioning of polycyclic aromatic hydrocarbons between dissolved and particulate phases in natural waters. Water Res 11:493–496CrossRefGoogle Scholar
  55. Hylland K (2006) Polycyclic aromatic hydrocarbon (PAH) ecotoxicology in marine ecosystems. J Toxicol Environ Heal Part A 69:109–123.  https://doi.org/10.1080/15287390500259327 CrossRefGoogle Scholar
  56. Karickhoff SW, Brown DS, Scott TA (1979) Sorption of hydrophobic pollutants on natural sediments. Water Res 13:241–248CrossRefGoogle Scholar
  57. Katsoyiannis A, Breivik K (2014) Model-based evaluation of the use of polycyclic aromatic hydrocarbons molecular diagnostic ratios as a source identification tool. Environ Pollut 184:488–494.  https://doi.org/10.1016/j.envpol.2013.09.028 CrossRefGoogle Scholar
  58. Katsoyiannis A, Terzi E, Cai QY (2007) On the use of PAH molecular diagnostic ratios in sewage sludge for the understanding of the PAH sources. Is this use appropriate? Chemosphere 69:1337–1339.  https://doi.org/10.1016/j.chemosphere.2007.05.084 CrossRefGoogle Scholar
  59. Kennish MJ (1992) Ecology of estuaries: anthropogenic effects. CRC PressGoogle Scholar
  60. Ko F-C, Sanford LP, Baker JE (2003) Internal recycling of particle reactive organic chemicals in the Chesapeake Bay water column. Mar Chem 81:163–176.  https://doi.org/10.1016/S0304-4203(03)00027-6 CrossRefGoogle Scholar
  61. Li H, Lu L, Huang W, Yang J, Ran Y (2014) In-situ partitioning and bioconcentration of polycyclic aromatic hydrocarbons among water, suspended particulate matter, and fish in the Dongjiang and Pearl Rivers and the Pearl River Estuary, China. Mar Pollut Bull 83:306–316.  https://doi.org/10.1016/j.marpolbul.2014.04.036 CrossRefGoogle Scholar
  62. Li P, Cao J, Diao X, Wang B, Zhou H, Han Q, Zhen P, Li Y (2015) Spatial distribution, sources and ecological risk assessment of polycyclic aromatic hydrocarbons in surface seawater from Yangpu Bay, China. Mar Pollut Bull 93:53–60.  https://doi.org/10.1016/j.marpolbul.2015.02.015 CrossRefGoogle Scholar
  63. Lim L, Wurl O, Karuppiah S, Obbard JP (2007) Atmospheric wet deposition of PAHs to the sea-surface microlayer. Mar Pollut Bull 54:1212–1219.  https://doi.org/10.1016/j.marpolbul.2007.03.023 CrossRefGoogle Scholar
  64. Lipiatou E, Saliot A (1991) Fluxes and transport of anthropogenic and natural polycyclic aromatic hydrocarbons in the western Mediterranean Sea. Mar Chem 32:51–71.  https://doi.org/10.1016/0304-4203(91)90025-R CrossRefGoogle Scholar
  65. Lipiatou E, Tolosa I, Simó R, Bouloubassi I, Dachs J, Marti S, Sicre MA, Bayona JM, Grimalt JO, Saliot A, Albaigés J (1997) Mass budget and dynamics of polycyclic aromatic hydrocarbons in the Mediterranean Sea. Deep Res Part II Top Stud Oceanogr 44:881–905.  https://doi.org/10.1016/S0967-0645(96)00093-8 CrossRefGoogle Scholar
  66. Liu L, Wang J, Wei G, Guan Y, Zeng EY (2012) Polycyclic aromatic hydrocarbons (PAHs) in continental shelf sediment of China: implications for anthropogenic influences on coastal marine environment. Environ Pollut 167:155–162.  https://doi.org/10.1016/j.envpol.2012.03.038 CrossRefGoogle Scholar
  67. Louati A, Elleuch B, Kallel M, Saliot A, Dagaut J, Oudot J (2001) Hydrocarbon contamination of coastal sediments from the Sfax area (Tunisia), Mediterranean Sea. Mar Pollut Bull 42:444–451.  https://doi.org/10.1016/S0025-326X(00)00179-X CrossRefGoogle Scholar
  68. Mackay D, Shiu WY, Ma KC (1992) Illustrated handbook of physical-chemical properties and environmental fate for organic chemicals. Lewis PublishersGoogle Scholar
  69. Maldonado C, Bayona JM, Bodineau L (1999) Sources, distribution, and water column processes of aliphatic and polycyclic aromatic hydrocarbons in the Northwestern Black Sea water. Environ Sci Technol 33:2693–2702.  https://doi.org/10.1021/es9811647 CrossRefGoogle Scholar
  70. Means JC, Wood SG, Hassett JJ, Banwart WL (1980) Sorption of polynuclear aromatic hydrocarbons by sediments and soils. Environ Sci Technol 14:1524–1528.  https://doi.org/10.1021/es60172a005 CrossRefGoogle Scholar
  71. Mille G, Guiliano M, Asia L, Malleret L, Jalaluddin N (2006) Sources of hydrocarbons in sediments of the bay of fort de France (Martinique). Chemosphere 64:1062–1073.  https://doi.org/10.1016/j.chemosphere.2005.12.001 CrossRefGoogle Scholar
  72. Mille G, Asia L, Guiliano M, Malleret L, Doumenq P (2007) Hydrocarbons in coastal sediments from the Mediterranean sea (Gulf of Fos area, France). Mar Pollut Bull 54:566–575.  https://doi.org/10.1016/j.marpolbul.2006.12.009 CrossRefGoogle Scholar
  73. Neff J (2002) Polycyclic aromatic hydrocarbons in the ocean. In: Neff J (ed) Bioaccumulation in marine organisms. Elsevier, Oxford, pp 241–318CrossRefGoogle Scholar
  74. Nizzetto L, Lohmann R, Gioia R, Jahnke A, Temme C, Dachs J, Herckes P, Di Guardo A, Jones KC (2008) PAHs in air and seawater along a North-South Atlantic transect: trends, processes and possible sources. Environ Sci Technol 42:1580–1585.  https://doi.org/10.1021/es0717414 CrossRefGoogle Scholar
  75. Readman JW, Fillmann G, Tolosa I, Bartocci J, Villeneuve JP, Catinni C, Mee LD (2002) Petroleum and PAH contamination of the Black Sea. Mar Pollut Bull 44:48–62.  https://doi.org/10.1016/S0025-326X(01)00189-8 CrossRefGoogle Scholar
  76. Rekik A, Denis M, Dugenne M, Barani A, Maalej S, Ayadi H (2014) Seasonal distribution of ultraphytoplankton and heterotrophic prokaryotes in relation to abiotic variables on the north coast of Sfax after restoration. Mar Pollut Bull 84:280–305.  https://doi.org/10.1016/j.marpolbul.2014.05.003 CrossRefGoogle Scholar
  77. Rielley G, Collier RJ, Jones DM, Eglinton G (1991) The biogeochemistry of Ellesmere Lake, U.K.-I: source correlation of leaf wax inputs to the sedimentary lipid record. Org Geochem 17:901–912.  https://doi.org/10.1016/0146-6380(91)90031-E CrossRefGoogle Scholar
  78. Shang J, Chen J, Shen Z, Xiao X, Yang H, Wang Y, Ruan A (2015) Photochemical degradation of PAHs in estuarine surface water: effects of DOM, salinity, and suspended particulate matter. Environ Sci Pollut Res 22:12374–12383.  https://doi.org/10.1007/s11356-015-4543-2 CrossRefGoogle Scholar
  79. Shrestha G, Traina SJ, Swanston CW (2010) Black Carbon’s properties and role in the environment: a comprehensive review. Sustainability 2:294–320.  https://doi.org/10.3390/su2010294 CrossRefGoogle Scholar
  80. Tobiszewski M, Namieśnik J (2012) PAH diagnostic ratios for the identification of pollution emission sources. Environ Pollut 162:110–119.  https://doi.org/10.1016/j.envpol.2011.10.025 CrossRefGoogle Scholar
  81. Tornero V, Hanke G (2016) Chemical contaminants entering the marine environment from sea-based sources: a review with a focus on European seas. Mar Pollut Bull 112:17–38.  https://doi.org/10.1016/j.marpolbul.2016.06.091 CrossRefGoogle Scholar
  82. Trabelsi A, Saad M, Masmoudi M, Alfaro SC (2015) Atmospheric aerosols and their impact on surface solar irradiation in Kerkennah Islands (eastern Tunisia). Atmos Res 161–162:102–107.  https://doi.org/10.1016/j.atmosres.2015.04.006 CrossRefGoogle Scholar
  83. Trabelsi A, Masmoudi M, Quisefit JP, Alfaro SC (2016) Compositional variability of the aerosols collected on Kerkennah Islands ( central Tunisia). Atmos Res 169:292–300CrossRefGoogle Scholar
  84. Tsapakis M, Apostolaki M, Eisenreich S, Stephanou EG (2006) Atmospheric deposition and marine sedimentation fluxes of polycyclic aromatic hydrocarbons in the Eastern Mediterranean Basin. Environ Sci Technol 40:4922–4927.  https://doi.org/10.1021/es060487x CrossRefGoogle Scholar
  85. Volkman JK, Holdsworth DG, Neill GP, Bavor HJ Jr (1992) Identification of natural, anthropogenic and petroleum hydrocarbons in aquatic sediments. Sci Total Env 112:203–219.  https://doi.org/10.1016/0048-9697(92)90188-X CrossRefGoogle Scholar
  86. Wang Z, Fingas MF (2003) Development of oil hydrocarbon fingerprinting and identification techniques. Mar Pollut Bull 47:423–452.  https://doi.org/10.1016/S0025-326X(03)00215-7 CrossRefGoogle Scholar
  87. Wang Z, Fingas M, Landriault M, Sigouin L, Feng Y, Mullin J (1997) Using systematic and comparative analytical data to identify the source of an unknown oil on contaminated birds. J Chromatogr A 775:251–265.  https://doi.org/10.1016/S0021-9673(97)00298-7 CrossRefGoogle Scholar
  88. Wang Z, Fingas M, Shu YY, Sigouin L, Landriault M, Lambert P, Turpin R, Campagna P, Mullin J (1999) Quantitative characterization of PAHs in burn residue and soot samples and differentiation of pyrogenic PAH1 from petrogenic PAHs—the 1994 mobile burn study. Environ Sci Technol 33:3100–3109.  https://doi.org/10.1021/es990031y CrossRefGoogle Scholar
  89. Wilcke W, Krauss M, Amelung W (2002) Carbon isotope signature of polycyclic aromatic hydrocarbons (PAHs): evidence for different sources in tropical and temperate environments? Environ Sci Technol 36:3530–3535CrossRefGoogle Scholar
  90. Witt G (2002) Occurrence and transport of polycyclic aromatic hydrocarbons in the water bodies of the Baltic Sea. Mar Chem 79:49–66.  https://doi.org/10.1016/S0304-4203(02)00035-X CrossRefGoogle Scholar
  91. Wu Y-L, Wang X-H, Li Y-Y, Hong H-S (2011) Occurrence of polycyclic aromatic hydrocarbons (PAHs) in seawater from the Western Taiwan Strait, China. Mar Pollut Bull 63:459–463.  https://doi.org/10.1016/j.marpolbul.2011.03.008 CrossRefGoogle Scholar
  92. Youngblood WW, Blumer M (1975) Polycyclic aromatic hydrocarbons in the environment: homologous series in soils and recent marine sediments. Geochim Cosmochim Acta 188:53–55.  https://doi.org/10.1126/science.188.4183.53 Google Scholar
  93. Yunker MB, Macdonald RW, Vingarzan R, Mitchell RH, Goyette D, Sylvestre S (2002) PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org Geochem 33:489–515.  https://doi.org/10.1016/S0146-6380(02)00002-5 CrossRefGoogle Scholar
  94. Zaghden H, Kallel M, Louati A, Elleuch B, Oudot J, Saliot A (2005) Hydrocarbons in surface sediments from the Sfax coastal zone, (Tunisia) Mediterranean Sea. Mar Pollut Bull 50:1287–1294.  https://doi.org/10.1016/j.marpolbul.2005.04.045 CrossRefGoogle Scholar
  95. Zaghden H, Kallel M, Elleuch B, Oudot J, Saliot A (2007) Sources and distribution of aliphatic and polyaromatic hydrocarbons in sediments of Sfax, Tunisia, Mediterranean Sea. Mar Chem 105:70–89.  https://doi.org/10.1016/j.marchem.2006.12.016 CrossRefGoogle Scholar
  96. Zaghden H, Kallel M, Elleuch B, Oudot J, Saliot A, Sayadi S (2014) Evaluation of hydrocarbon pollution in marine sediments of Sfax coastal areas from the Gabes Gulf of Tunisia, Mediterranean Sea. Environ Earth Sci 72:1073–1082.  https://doi.org/10.1007/s12665-013-3023-6 CrossRefGoogle Scholar
  97. Zaghden H, Tedetti M, Sayadi S, Serbaji MM, Elleuch B, Saliot A (2017) Origin and distribution of hydrocarbons and organic matter in the surficial sediments of the Sfax-Kerkennah channel (Tunisia, Southern Mediterranean Sea). Mar Pollut Bull 117:414–428.  https://doi.org/10.1016/j.marpolbul.2017.02.007 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Rania Fourati
    • 1
  • Marc Tedetti
    • 2
  • Catherine Guigue
    • 2
  • Madeleine Goutx
    • 2
  • Hatem Zaghden
    • 3
  • Sami Sayadi
    • 3
  • Boubaker Elleuch
    • 1
  1. 1.Laboratoire d’Ingénierie de l’Environnement et d’Ecotechnologie, ENISUniversité de SfaxSfaxTunisia
  2. 2.Aix-Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM 110MarseilleFrance
  3. 3.Laboratoire des Bioprocédés Environnementaux, Centre de Biotechnologie de SfaxSfaxTunisia

Personalised recommendations