Environmental Science and Pollution Research

, Volume 25, Issue 2, pp 1470–1483 | Cite as

Adaptation in toxic environments: comparative genomics of loci carrying antibiotic resistance genes derived from acid mine drainage waters

  • Florence Arsène-Ploetze
  • Olfa Chiboub
  • Didier Lièvremont
  • Julien Farasin
  • Kelle C. Freel
  • Stephanie Fouteau
  • Valérie Barbe
Research Article

Abstract

Several studies have suggested the existence of a close relationship between antibiotic-resistant phenotypes and resistance to other toxic compounds such as heavy metals, which involve co-resistance or cross-resistance mechanisms. A metagenomic library was previously constructed in Escherichia coli with DNA extracted from the bacterial community inhabiting an acid mine drainage (AMD) site highly contaminated with heavy metals. Here, we conducted a search for genes involved in antibiotic resistance using this previously constructed library. In particular, resistance to antibiotics was observed among five clones carrying four different loci originating from CARN5 and CARN2, two genomes reconstructed from the metagenomic data. Among the three CARN2 loci, two carry genes homologous to those previously proposed to be involved in antibiotic resistance. The third CARN2 locus carries a gene encoding a membrane transporter with an unknown function and was found to confer bacterial resistance to rifampicin, gentamycin, and kanamycin. The genome of Thiomonas delicata DSM 16361 and Thiomonas sp. X19 were sequenced in this study. Homologs of genes carried on these three CARN2 loci were found in these genomes, two of these loci were found in genomic islands. Together, these findings confirm that AMD environments contaminated with several toxic metals also constitute habitats for bacteria that function as reservoirs for antibiotic resistance genes.

Keywords

Acid mine drainage (AMD) Comparative genomics Extrusion pumps Genome evolution Horizontal gene transfer 

Notes

Acknowledgements

We thank Abdelmalek ALIOUA for performing the Sanger sequencing experiments and Fabienne Battaglia-Brunet for providing the Tm. delicata DSM16361 strain.

Author contributions

O. C., D. L., J. F., K. C. F., S. F., and F. A.-P. performed research; O. C., K. C. F., V.B., and F.A.-P. wrote the paper.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11356_2017_535_MOESM1_ESM.xlsx (22 kb)
ESM 1 (XLSX 21 kb)

References

  1. Arsène-Ploetze F, Koechler S, Marchal M et al (2010) Structure, function, and evolution of the Thiomonas spp. genome. PLoS Genet 6:e1000859.  https://doi.org/10.1371/journal.pgen.1000859 CrossRefGoogle Scholar
  2. Baker-Austin C, Wright MS, Stepanauskas R, McArthur JV (2006) Co-selection of antibiotic and metal resistance. Trends Microbiol 14:176–182.  https://doi.org/10.1016/j.tim.2006.02.006 CrossRefGoogle Scholar
  3. Battaglia-Brunet F, Joulian C, Garrido F et al (2006) Oxidation of arsenite by Thiomonas strains and characterization of Thiomonas arsenivorans sp. nov. Antonie Van Leeuwenhoek 89:99–108.  https://doi.org/10.1007/s10482-005-9013-2 CrossRefGoogle Scholar
  4. Battaglia-Brunet F, El Achbouni H, Quemeneur M et al (2011) Proposal that the arsenite-oxidizing organisms, Thiomonas cuprina and “Thiomonas arsenivorans” be reclassified as strains of Thiomonas delicata. Int J Syst Evol Microbiol 61:2816–2821.  https://doi.org/10.1099/ijs.0.023408-0 CrossRefGoogle Scholar
  5. Bertin PN, Heinrich-Salmeron A, Pelletier E et al (2011) Metabolic diversity among main microorganisms inside an arsenic-rich ecosystem revealed by meta- and proteo-genomics. ISME J 5:1735–1747.  https://doi.org/10.1038/ismej.2011.51 CrossRefGoogle Scholar
  6. Blanco P, Hernando-Amado S, Reales-Calderon JA et al (2016) Bacterial multidrug efflux pumps: much more than antibiotic resistance determinants. Microorganisms 4:14.  https://doi.org/10.3390/microorganisms4010014 CrossRefGoogle Scholar
  7. Bruneel DR, Casiot C et al (2006) Diversity of microorganisms in Fe-As-rich acid mine drainage waters of Carnoulès, France. Appl Environ Microbiol 72:551–556.  https://doi.org/10.1128/AEM.72.1.551-556.2006 CrossRefGoogle Scholar
  8. Casiot C, Morin G, Juillot F et al (2003) Bacterial immobilization and oxidation of arsenic in acid mine drainage (Carnoulès creek, France). Water Res 37:2929–2936.  https://doi.org/10.1016/S0043-1354(03)00080-0 CrossRefGoogle Scholar
  9. Casiot C, Lebrun S, Morin G et al (2005) Sorption and redox processes controlling arsenic fate and transport in a stream impacted by acid mine drainage. Sci Total Environ 347:122–130.  https://doi.org/10.1016/j.scitotenv.2004.12.039 CrossRefGoogle Scholar
  10. Chen S, Li X, Sun G et al (2015) Heavy metal induced antibiotic resistance in bacterium LSJC7. Int J Mol Sci 16:23390–23404.  https://doi.org/10.3390/ijms161023390 CrossRefGoogle Scholar
  11. Cheng H, Hu Y, Luo J et al (2009) Geochemical processes controlling fate and transport of arsenic in acid mine drainage (AMD) and natural systems. J Hazard Mater 165:13–26.  https://doi.org/10.1016/j.jhazmat.2008.10.070 CrossRefGoogle Scholar
  12. Coupland K, Battaglia-Brunet F, Hallberg KB et al (2004) Oxidation of iron, sulfur and arsenic in mine waters and mine wastes: an important role for novel Thiomonas spp. In: Tsezos M, Hatzikioseyian A, Remoudaki E (eds) Biohydrometallurgy: a sustainable technology in evolution. National Technical University of Athens, Zografou, pp 639–646Google Scholar
  13. Cui L, Zhang Y-J, Huang WE et al (2016) Surface-enhanced Raman spectroscopy for identification of heavy metal arsenic(V)-mediated enhancing effect on antibiotic resistance. Anal Chem 88:3164–3170.  https://doi.org/10.1021/acs.analchem.5b04490 CrossRefGoogle Scholar
  14. Delavat F, Lett M-C, Lièvremont D (2012a) Novel and unexpected bacterial diversity in an arsenic-rich ecosystem revealed by culture-dependent approaches. Biol Direct 7:28.  https://doi.org/10.1186/1745-6150-7-28 CrossRefGoogle Scholar
  15. Delavat F, Phalip V, Forster A et al (2012b) Amylases without known homologues discovered in an acid mine drainage: significance and impact. Sci Rep 2:354.  https://doi.org/10.1038/srep00354 CrossRefGoogle Scholar
  16. Delavat F, Lett M-C, Lièvremont D (2013) Yeast and bacterial diversity along a transect in an acidic, As-Fe rich environment revealed by cultural approaches. Sci Total Environ 463–464:823–828.  https://doi.org/10.1016/j.scitotenv.2013.06.023 CrossRefGoogle Scholar
  17. Delmar JA, C-C S, EW Y (2015) Heavy metal transport by the CusCFBA efflux system. Protein Sci Publ Protein Soc 24:1720–1736.  https://doi.org/10.1002/pro.2764 CrossRefGoogle Scholar
  18. Dereeper A, Guignon V, Blanc G et al (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36:W465–W469.  https://doi.org/10.1093/nar/gkn180 CrossRefGoogle Scholar
  19. Dereeper A, Audic S, Claverie J-M, Blanc G (2010) BLAST-EXPLORER helps you building datasets for phylogenetic analysis. BMC Evol Biol 10:8.  https://doi.org/10.1186/1471-2148-10-8 CrossRefGoogle Scholar
  20. Duquesne K, Lebrun S, Casiot C et al (2003) Immobilization of arsenite and ferric iron by Acidithiobacillus ferrooxidans and its relevance to acid mine drainage. Appl Environ Microbiol 69:6165–6173CrossRefGoogle Scholar
  21. Duquesne K, Lieutaud A, Ratouchniak J et al (2008) Arsenite oxidation by a chemoautotrophic moderately acidophilic Thiomonas sp.: from the strain isolation to the gene study. Environ Microbiol 10:228–237.  https://doi.org/10.1111/j.1462-2920.2007.01447.x Google Scholar
  22. Fang L, Li X, Li L et al (2016) Co-spread of metal and antibiotic resistance within ST3-IncHI2 plasmids from E. coli isolates of food-producing animals. Sci Rep 6:25312.  https://doi.org/10.1038/srep25312 CrossRefGoogle Scholar
  23. Farasin J, Andres J, Casiot C et al (2015) Thiomonas sp. CB2 is able to degrade urea and promote toxic metal precipitation in acid mine drainage waters supplemented with urea. Front Microbiol 6:993.  https://doi.org/10.3389/fmicb.2015.00993 CrossRefGoogle Scholar
  24. Farias P, Espírito Santo C, Branco R et al (2015) Natural hot spots for gain of multiple resistances: arsenic and antibiotic resistances in heterotrophic, aerobic bacteria from marine hydrothermal vent fields. Appl Environ Microbiol 81:2534–2543.  https://doi.org/10.1128/AEM.03240-14 CrossRefGoogle Scholar
  25. Freel KC, Krueger MC, Farasin J et al (2015) Adaptation in toxic environments: arsenic genomic islands in the bacterial genus Thiomonas. PLoS One 10:e0139011.  https://doi.org/10.1371/journal.pone.0139011 CrossRefGoogle Scholar
  26. Gatzeva-Topalova PZ, May AP, Sousa MC (2005) Structure and mechanism of ArnA: conformational change implies ordered dehydrogenase mechanism in key enzyme for polymyxin resistance. Struct Lond Engl 13:929–942.  https://doi.org/10.1016/j.str.2005.03.018 Google Scholar
  27. Gunn JS, Lim KB, Krueger J et al (1998) PmrA-PmrB-regulated genes necessary for 4-aminoarabinose lipid A modification and polymyxin resistance. Mol Microbiol 27:1171–1182CrossRefGoogle Scholar
  28. Halter D, Andres J, Plewniak F et al (2015) Arsenic hypertolerance in the protist Euglena mutabilis is mediated by specific transporters and functional integrity maintenance mechanisms. Environ Microbiol 17:1941–1949.  https://doi.org/10.1111/1462-2920.12474 CrossRefGoogle Scholar
  29. Henriques I, Tacão M, Leite L et al (2016) Co-selection of antibiotic and metal(loid) resistance in gram-negative epiphytic bacteria from contaminated salt marshes. Mar Pollut Bull 109:427–434.  https://doi.org/10.1016/j.marpolbul.2016.05.031 CrossRefGoogle Scholar
  30. Huang K, Zhang Q, Song Y et al (2016) Characterization of spectinomycin resistance in Streptococcus suis leads to two novel insights into drug resistance formation and dissemination mechanism. Antimicrob Agents Chemother 60:6390–6392.  https://doi.org/10.1128/AAC.01157-16 CrossRefGoogle Scholar
  31. Jia B, Raphenya AR, Alcock B et al (2017) CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res 45:D566–D573.  https://doi.org/10.1093/nar/gkw1004 CrossRefGoogle Scholar
  32. Jung Y-H, Shin ES, Kim O et al (2010) Characterization of two newly identified genes, vgaD and vatH, [corrected] conferring resistance to streptogramin A in Enterococcus faecium. Antimicrob Agents Chemother 54:4744–4749.  https://doi.org/10.1128/AAC.00798-09 CrossRefGoogle Scholar
  33. Khan AR, Park G-S, Asaf S et al (2017) Complete genome analysis of Serratia marcescens RSC-14: a plant growth-promoting bacterium that alleviates cadmium stress in host plants. PLoS One 12:e0171534.  https://doi.org/10.1371/journal.pone.0171534 CrossRefGoogle Scholar
  34. Knapp CW, McCluskey SM, Singh BK et al (2011) Antibiotic resistance gene abundances correlate with metal and geochemical conditions in archived Scottish soils. PLoS One 6:e27300.  https://doi.org/10.1371/journal.pone.0027300 CrossRefGoogle Scholar
  35. Koechler S, Bertin PN, Plewniak F et al (2016) Arsenite response in Coccomyxa sp. Carn explored by transcriptomic and non-targeted metabolomic approaches. Environ Microbiol 18:1289–1300.  https://doi.org/10.1111/1462-2920.13227 CrossRefGoogle Scholar
  36. Krejcík Z, Denger K, Weinitschke S et al (2008) Sulfoacetate released during the assimilation of taurine-nitrogen by Neptuniibacter caesariensis: purification of sulfoacetaldehyde dehydrogenase. Arch Microbiol 190:159–168.  https://doi.org/10.1007/s00203-008-0386-2 CrossRefGoogle Scholar
  37. Li X-Z, Poole K, Nikaido H (2003) Contributions of MexAB-OprM and an EmrE homolog to intrinsic resistance of Pseudomonas aeruginosa to aminoglycosides and dyes. Antimicrob Agents Chemother 47:27–33CrossRefGoogle Scholar
  38. Lièvremont D, Bertin PN, Lett M-C (2009) Arsenic in contaminated waters: biogeochemical cycle, microbial metabolism and biotreatment processes. Biochimie 91:1229–1237.  https://doi.org/10.1016/j.biochi.2009.06.016 CrossRefGoogle Scholar
  39. Mallik S, Virdi JS, Johri AK (2012) Proteomic analysis of arsenite—mediated multiple antibiotic resistance in Yersinia enterocolitica biovar 1A. J Basic Microbiol 52:306–313.  https://doi.org/10.1002/jobm.201100109 CrossRefGoogle Scholar
  40. Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58:201–235CrossRefGoogle Scholar
  41. Bryan, Marchal M, Battaglia-Brunet F et al (2009) Carbon and arsenic metabolism in Thiomonas strains: differences revealed diverse adaptation processes. BMC Microbiol 9:127.  https://doi.org/10.1186/1471-2180-9-127 CrossRefGoogle Scholar
  42. Martínez JL, Coque TM, Baquero F (2015) What is a resistance gene? Ranking risk in resistomes. Nat Rev Microbiol 13:116–123.  https://doi.org/10.1038/nrmicro3399 CrossRefGoogle Scholar
  43. McArthur AG, Waglechner N, Nizam F et al (2013) The comprehensive antibiotic resistance database. Antimicrob Agents Chemother 57:3348–3357.  https://doi.org/10.1128/AAC.00419-13 CrossRefGoogle Scholar
  44. Milde K, Sand W, Wolff W, Bock E (1983) Thiobacilli of the corroded concrete walls of the Hamburg sewer system. J Gen Microbiol 129:1327–1333Google Scholar
  45. Oremland RS, Stolz JF (2005) Arsenic, microbes and contaminated aquifers. Trends Microbiol 13:45–49.  https://doi.org/10.1016/j.tim.2004.12.002 CrossRefGoogle Scholar
  46. Pal C, Bengtsson-Palme J, Kristiansson E, Larsson DGJ (2015) Co-occurrence of resistance genes to antibiotics, biocides and metals reveals novel insights into their co-selection potential. BMC Genomics 16:964.  https://doi.org/10.1186/s12864-015-2153-5 CrossRefGoogle Scholar
  47. Bruneel, Personné J-C, Casiot C et al (2003) Mediation of arsenic oxidation by Thiomonas sp. in acid-mine drainage (Carnoulès, France). J Appl Microbiol 95:492–499CrossRefGoogle Scholar
  48. Rodríguez-Rojas F, Tapia P, Castro-Nallar E et al (2016) Draft genome sequence of a multi-metal resistant bacterium Pseudomonas putida ATH-43 isolated from Greenwich Island, Antarctica. Front Microbiol 7:1777.  https://doi.org/10.3389/fmicb.2016.01777 CrossRefGoogle Scholar
  49. Sambrook J, Fritsch E, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor, New YorkGoogle Scholar
  50. Schwarz S, Kehrenberg C, Doublet B, Cloeckaert A (2004) Molecular basis of bacterial resistance to chloramphenicol and florfenicol. FEMS Microbiol Rev 28:519–542.  https://doi.org/10.1016/j.femsre.2004.04.001 CrossRefGoogle Scholar
  51. Seiler C, Berendonk TU (2012) Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture. Front Microbiol 3:399.  https://doi.org/10.3389/fmicb.2012.00399 CrossRefGoogle Scholar
  52. Silver S, Phung LT (2005) A bacterial view of the periodic table: genes and proteins for toxic inorganic ions. J Ind Microbiol Biotechnol 32:587–605.  https://doi.org/10.1007/s10295-005-0019-6 CrossRefGoogle Scholar
  53. Sullivan MJ, Petty NK, Beatson SA (2011) Easyfig: a genome comparison visualizer. Bioinforma Oxf Engl 27:1009–1010.  https://doi.org/10.1093/bioinformatics/btr039 CrossRefGoogle Scholar
  54. Teixeira P, Tacão M, Alves A, Henriques I (2016) Antibiotic and metal resistance in a ST395 Pseudomonas aeruginosa environmental isolate: a genomics approach. Mar Pollut Bull 110:75–81.  https://doi.org/10.1016/j.marpolbul.2016.06.086 CrossRefGoogle Scholar
  55. Vallenet D, Labarre L, Rouy Z et al (2006) MaGe: a microbial genome annotation system supported by synteny results. Nucleic Acids Res 34:53–65.  https://doi.org/10.1093/nar/gkj406 CrossRefGoogle Scholar
  56. Vallenet D, Engelen S, Mornico D et al (2009) MicroScope: a platform for microbial genome annotation and comparative genomics. Database J Biol Databases Curation 2009:bap021.  https://doi.org/10.1093/database/bap021 Google Scholar
  57. Vallenet D, Belda E, Calteau A et al (2013) MicroScope—an integrated microbial resource for the curation and comparative analysis of genomic and metabolic data. Nucleic Acids Res 41:D636–D647.  https://doi.org/10.1093/nar/gks1194 CrossRefGoogle Scholar
  58. Vernikos GS, Parkhill J (2006) Interpolated variable order motifs for identification of horizontally acquired DNA: revisiting the Salmonella pathogenicity islands. Bioinforma Oxf Engl 22:2196–2203.  https://doi.org/10.1093/bioinformatics/btl369 CrossRefGoogle Scholar
  59. Volant A, Desoeuvre A, Casiot C et al (2012) Archaeal diversity: temporal variation in the arsenic-rich creek sediments of Carnoulès Mine, France. Extrem Life Extreme Cond 16:645–657.  https://doi.org/10.1007/s00792-012-0466-8 CrossRefGoogle Scholar
  60. Volant A, Bruneel O, Desoeuvre A et al (2014) Diversity and spatiotemporal dynamics of bacterial communities: physicochemical and other drivers along an acid mine drainage. FEMS Microbiol Ecol 90:247–263.  https://doi.org/10.1111/1574-6941.12394 CrossRefGoogle Scholar
  61. Waack S, Keller O, Asper R et al (2006) Score-based prediction of genomic islands in prokaryotic genomes using hidden Markov models. BMC Bioinf 7:142.  https://doi.org/10.1186/1471-2105-7-142 CrossRefGoogle Scholar
  62. Wales AD, Davies RH (2015) Co-selection of resistance to antibiotics, biocides and heavy metals, and its relevance to foodborne pathogens. Antibiot Basel Switz 4:567–604.  https://doi.org/10.3390/antibiotics4040567 Google Scholar
  63. Weinitschke S, Denger K, Cook AM, Smits THM (2007) The DUF81 protein TauE in Cupriavidus necator H16, a sulfite exporter in the metabolism of C2 sulfonates. Microbiol Read Engl 153:3055–3060.  https://doi.org/10.1099/mic.0.2007/009845-0 CrossRefGoogle Scholar
  64. Zhai Y, He Z, Kang Y et al (2016) Complete nucleotide sequence of pH11, an IncHI2 plasmid conferring multi-antibiotic resistance and multi-heavy metal resistance genes in a clinical Klebsiella pneumoniae isolate. Plasmid 86:26–31.  https://doi.org/10.1016/j.plasmid.2016.04.001 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Laboratoire Génétique Moléculaire, Génomique et Microbiologie, UMR7156, CNRS-Université de StrasbourgStrasbourgFrance
  2. 2.Institut de Biologie Moléculaire des Plantes, CNRS, Université de StrasbourgStrasbourgFrance
  3. 3.Institut de Chimie de Strasbourg, UMR7177 CNRS-Université de StrasbourgStrasbourgFrance
  4. 4.Laboratoire de Biologie Moléculaire pour l’Etude des Génomes, (LBioMEG), CEA/DRF/IBFJ/GenoscopeEvryFrance

Personalised recommendations