Environmental Science and Pollution Research

, Volume 25, Issue 9, pp 8240–8248 | Cite as

Ozone flux in plant ecosystems: new opportunities for long-term monitoring networks to deliver ozone-risk assessments

  • Silvano FaresEmail author
  • Adriano Conte
  • Abad Chabbi
Ozone and plant life: the Italian state-of-the-art


Ozone (O3) is a photochemically formed reactive gas responsible for a decreasing carbon assimilation in plant ecosystems. Present in the atmosphere in trace concentrations (less than 100 ppbv), this molecule is capable of inhibiting carbon assimilation in agricultural and forest ecosystems. Ozone-risk assessments are typically based on manipulative experiments. Present regulations regarding critical ozone levels are mostly based on an estimated accumulated exposure over a given threshold concentration. There is however a scientific consensus over flux estimates being more accurate, because they include plant physiology analyses and different environmental parameters that control the uptake—that is, not just the exposure—of O3. While O3 is a lot more difficult to measure than other non-reactive greenhouse gases, UV-based and chemiluminescence sensors enable precise and fast measurements and are therefore highly desirable for eddy covariance studies. Using micrometeorological techniques in association with latent heat flux measurements in the field allows for the partition of ozone fluxes into the stomatal and non-stomatal sinks along the soil-plant continuum. Long-term eddy covariance measurements represent a key opportunity in estimating carbon assimilation at high-temporal resolutions, in an effort to study the effect of climate change on photosynthetic mechanisms. Our aim in this work is to describe potential of O3 flux measurement at the canopy level for ozone-risk assessment in established long-term monitoring networks.


Ozone flux Ozone-risk assessment Eddy covariance Carbon fluxes Plant damage Monitoring networks 



The CREA team wants to acknowledge the national projects financed by Regione Lazio-LazioInnova URBANFOR3 (FILAS-RU-2014-1021 (LR 13/2008)—“Ruolo della forestazione urbana nella mitigazione delle emergenze climatiche e dell'inquinamento: strumenti innovativi di pianificazione e valutazione”) and the EU LIFE program MOTTLES “Monitoring Ozone Injury for Setting Critical levels” (LIFE15 ENV/IT/000183). The research was also made possible thanks to the following: the Scientific Commission of Castelporziano and the Multi-disciplinary Center for the Study of Coastal Mediterranean Ecosystems. We thank the General Secretariat of the Presidency of Italian Republic for financing the CASTEL4 project and the Directorate of Castelporziano Estate. Abad Chabbi acknowledges the H2020 ENVRIplus Grant Agreement number 654182 for ongoing support.


  1. Altimir, N., Kolari, P., Tuovinen, J. (2006). Foliage surface ozone deposition: a role for surface moisture? Biogeosciences Available at:
  2. Aubinet, M., Vesala, T., Papale, D (2012). Eddy covariance: a practical guide to measurement and data analysis. Available at:
  3. Ball, J.T., Woodrow, I.E., Berry, J.A. (1987). A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In Progress in Photosynthesis Research. (pp. 221224). Dordrecht: Springer Netherlands. Available at:
  4. Bonan, G.B., Lawrence, P.J., Oleson, K.W., et al. (2011). Improving canopy processes in the Community Land Model version 4 (CLM4) using global flux fields empirically inferred from FLUXNET data. J. Geophys. Res. Biogeosciences, 116. Available at:
  5. Büker, P., Emberson, L.D., Ashmore, M.R., et al. (2007). Comparison of different stomatal conductance algorithms for ozone flux modelling. Environ Pollut, 146, 726–735. Available at:
  6. Bussotti, F., Ferretti, M. (2009). Visible injury, crown condition, and growth responses of selected Italian forests in relation to ozone exposure. Environ Pollut, 157, 1427–1437. Available at:
  7. Cape, J.N., Hamilton, R., Heal, M.R. (2009). Reactive uptake of ozone at simulated leaf surfaces: implications for “non-stomatal” ozone flux. Atmos Environ, 43, 1116–1123. Available at:
  8. Ciccioli, P., Brancaleoni, E., Frattoni, M., et al. (1999). Emission of reactive terpene compounds from orange orchards and their removal by within-canopy processes. J Geophys Res Atmos, 104, 8077–8094. Available at:
  9. Clifton, O.E., Fiore, A.M., Munger, J.W., et al. (2016). Interannual variability in ozone removal by a temperate deciduous forest. Geophys Res Lett, 44, 542–552. Available at:
  10. Coe, H. (1995). Canopy scale measurements of stomatal and cuticular 03 uptake by sitka spruce. Atmos Environ, 29, 1413–1423. Available at:
  11. Collins, W.J., Sitch, S., Boucher, O. (2010). How vegetation impacts affect climate metrics for ozone precursors. J Geophys Res, 115, D23308. Available at:
  12. Cowan, I.R., Farquhar, G.D. (1977). Stomatal function in relation to leaf metabolism and environment. Symp Soc Exp Biol, 31, 471–505. Available at:
  13. Desai AR, Richardson AD, Moffat AM, Kattge J, Hollinger DY et al (2008) Cross-site evaluation of eddy covariance GPP and RE decomposition techniques. Agric For Meteorol 148:821–838. CrossRefGoogle Scholar
  14. Dorsey, J.R., Duyzer, J.H., Gallagher, M.W., et al. (2004). Oxidized nitrogen and ozone interaction with forests. I: experimental observations and analysis of exchange with Douglas fir. Q J R Meteorol Soc, 130, 1941–1955. Available at:
  15. Fares S, Park JH, Ormeno E, Gentner DR, McKay M et al (2010) Ozone uptake by citrus trees exposed to a range of ozone concentrations. Atmos Environ 44:3404–3412. CrossRefGoogle Scholar
  16. Fares, S., Weber, R., Park, J.-H., et al. (2012). Ozone deposition to an orange orchard: partitioning between stomatal and non-stomatal sinks. Environ Pollut, 169, 258–266. Available at:
  17. Fares, S., Matteucci, G., Scarascia Mugnozza, G., et al. (2013a). Testing of models of stomatal ozone fluxes with field measurements in a mixed Mediterranean forest. Atmos Environ, 67, 242–251. Available at:
  18. Fares, S., Vargas, R., Detto, M., et al. (2013b). Tropospheric ozone reduces carbon assimilation in trees: estimates from analysis of continuous flux measurements. Glob Chang Biol, 19, 2427–2443. Available at:
  19. Fares, S., Savi, F., Muller, J., et al. (2014). Simultaneous measurements of above and below canopy ozone fluxes help partitioning ozone deposition between its various sinks in a Mediterranean Oak Forest. Agric For Meteorol, 198–199, 181–191. Available at:
  20. Farquhar, G.D., von Caemmerer, S., Berry, J.A. (1980). A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149, 78–90. Available at:
  21. Gerosa G, Derghi F, Cieslik S (2007) Comparison of different algorithms for stomatal ozone flux determination from micrometeorological measurements. Water Air Soil Pollut 179:309–321. CrossRefGoogle Scholar
  22. Hardacre, C., Wild, O., Emberson, L. (2015). An evaluation of ozone dry deposition in global scale chemistry climate models. Atmos Chem Phys, 15, 6419–6436. Available at:
  23. Hartmann, D.L., Klein Tank, A.M.G., Rusticucci, M., Alexander, L.V., et al. (2013). Observations: atmosphere and surface. In: Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M. (Eds.), Climate change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USAGoogle Scholar
  24. Hogg, A., Uddling, J., Ellsworth, D., et al. (2007). Stomatal and non-stomatal fluxes of ozone to a northern mixed hardwood forest. Tellus Ser B Chem Phys Meteorol, 59, 514–525. Available at:
  25. Hoshika, Y., Katata, G., Deushi, M., et al. (2015). Ozone-induced stomatal sluggishness changes carbon and water balance of temperate deciduous forests. Sci Rep, 5, 9871. Available at:
  26. Hoshika, Y., Marco, A. De, Materassi, A., et al. (2016) Light intensity affects ozone-induced stomatal sluggishness in snapbean. Water Air Soil Pollut. 227, 419. Available at:
  27. Hoshika, Y., Fares, S., Savi, F., et al. (2017). Stomatal conductance models for ozone risk assessment at canopy level in two Mediterranean evergreen forests. Agric For Meteorol, 234–235, 212–221. Available at:
  28. Jud, W., Fischer, L., Canaval, E., et al. (2016). Plant surface reactions: an opportunistic ozone defence mechanism impacting atmospheric chemistry. Atmos Chem Phys, 16, 277–292. Available at:
  29. Kurpius, M.R., Goldstein, A.H. (2003). Gas-phase chemistry dominates O3 loss to a forest, implying a source of aerosols and hydroxyl radicals to the atmosphere. Geophys Res Lett, 30. Available at:
  30. Laisk, A., Kull, O., Moldau, H. (1989). Ozone concentration in leaf intercellular air spaces is close to zero. Plant Physiol, 90, 1163–7. Available at:
  31. Lasslop, G., Reichstein M, Papale, D et al. (2010). Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global evaluation. Glob Chang Biol. 16, 187–208. Available at:
  32. Launiainen, S., Katul, G.G., Grönholm, T., et al. (2013). Partitioning ozone fluxes between canopy and forest floor by measurements and a multi-layer model. Agric For Meteorol, 173, 85–99. Available at:
  33. Lin, M., Guan, D., Wang, A., et al. (2015). Impact of leaf retained water on tree transpiration. Available at:
  34. Lombardozzi, D., Levis, S., Bonan, G., et al. (2012). Predicting photosynthesis and transpiration responses to ozone: decoupling modeled photosynthesis and stomatal conductance. Biogeosciences, 9, 3113–3130. Available at:
  35. Massman, W.J. (1998). A review of the molecular diffusivities of H2O, CO2, CH4, CO, O3, SO2, NH3, N2O, NO, and NO2 in air, O2 and N2 near STP. Atmos Environ, 32, 1111–1127. Available at:
  36. Matyssek R, Clarke N, Cudlin P, Mikkelsen TN et al (2013) Climate change, air pollution and global challenges: understanding and perspectives from forest research developments in environmental science, vol 13. Elsevier, Amsterdam, p 622Google Scholar
  37. Medlyn, B.E., Duursma, R.A., Eamus, D., et al. (2011). Reconciling the optimal and empirical approaches to modelling stomatal conductance. Glob Chang Biol, 17, 2134–2144. Available at:
  38. Mills G, Pleijel H, Braun S, Büker P, Bermejo V et al (2011) New stomatal flux-based critical levels for ozone effects on vegetation. Atmos Environ 45:5064–5068CrossRefGoogle Scholar
  39. Monks PS, Granier C, Fuzzi S, Stohl A, Williams M, Akimoto H, Amman M, Baklanov A et al (2009) Atmospheric composition change—global and regional air quality. Atmos Environ 43(33):5264–5344CrossRefGoogle Scholar
  40. Monteith JL, Unsworth M (1990) Principles of environmental physics. London, ArnoldGoogle Scholar
  41. Moore, K.E., Fitzjarrald, D.R., Sakai, R.K., et al. (1996). Seasonal variation in radiative and turbulent exchange at a deciduous forest in Central Massachusetts. J Appl Meteorol, 35, 122–134. Available at:
  42. Nölscher, A.C., Williams, J., Sinha, V., et al. (2012). Summertime total OH reactivity measurements from boreal forest during HUMPPA-COPEC 2010. Atmos Chem Phys. 12, 8257–8270. Available at:
  43. Nölscher, A.C., Bourtsoukidis, E., Bonn, B., et al. (2013). Geoscientific instrumentation methods and data systems seasonal measurements of total OH reactivity emission rates from Norway spruce in 2011. Biogeosciences, 10, 4241–4257. Available at:
  44. Peñuelas J, Staudt M (2010) BVOCs and global change. Trends Plant Sci 15:133–44.
  45. Rannik, Ü., Altimir, N., Mammarella, I., et al. (2012). Ozone deposition into a boreal forest over a decade of observations: evaluating deposition partitioning and driving variables. Atmos Chem Phys, 12, 12165–12182. Available at:
  46. Shu, Y., Atkinson, R. (1994). Rate constants for the gas-phase reactions of O3 with a series of terpenes and OH radical formation from the O3 reactions with sesquiterpenes at 296 ± 2 K. In J Chem Kinet, 26, 1193–1205. Available at:
  47. Sitch, S., Cox, P.M., Collins, W.J., et al. (2007). Indirect radiative forcing of climate change through ozone effects on the land-carbon sink. Nature, 448, 791–794. Available at:
  48. Turnipseed, A.A., Burns, S.P., Moore, D.J.P., et al. (2009). Controls over ozone deposition to a high elevation subalpine forest. Agric For Meteorol, 149, 1447–1459. Available at:
  49. UNECE (2004). Revised manual on methodologies and criteria for mapping critical levels/loads and geographical areas where they are exceeded Available at:
  50. Wang, X., Chancellor, G., Evenstad, J., et al. (2009). A novel optical instrument for estimating size segregated aerosol mass concentration in real time. Aerosol Sci Technol, 43, 939–950. Available at:
  51. Yue, X., Unger, N. (2014). Ozone vegetation damage effects on gross primary productivity in the United States. Atmos Chem Phys, 14, 9137–9153. Available at:
  52. Zannoni, N., Gros, V., Lanza, M., et al. (2016). OH reactivity and concentrations of biogenic volatile organic compounds in a Mediterranean forest of downy oak trees. Atmos Chem Phys, 16, 1619–1636. Available at:
  53. Zeller, K.F., Nikolov, N.T. (2000). Quantifying simultaneous fluxes of ozone, carbon dioxide and water vapor above a subalpine forest ecosystem. Environ Pollut, 107, 1–20. Available at:
  54. Zhang, L., Brook, J.R., Vet, R. (2003). A revised parameterization for gaseous dry deposition in air-quality models. Atmos Chem Phys, 3, 2067–2082. Available at:
  55. Zona D, Gioli B, Fares S et al (2014) Environmental controls on ozone fluxes in a poplar plantation in Western Europe. Environ Pollut 184:201–210. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Council of Agricultural Research and Economics (CREA)Research Centre for Forestry and WoodArezzoItaly
  2. 2.Institut National de la Recherche Agronomique (INRA), URP3FLusignanFrance
  3. 3.NRA, EcosysThiverval-GrignonFrance

Personalised recommendations