Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Biological control of wilt disease complex on tomato crop caused by Meloidogyne javanica and Fusarium oxysporum f.sp. lycopersici by Verticillium leptobactrum


The efficacy of Verticillium leptobactrum isolate (HR1) was evaluated in the control of root-knot nematode and Fusarium wilt fungus under laboratory and greenhouse conditions. Five concentrations of V. leptobactrum (HR1) isolate were tested for their nematicidal and fungicidal activities against Meloidogyne javanica and Fusarium oxysporum f.sp. lycopersici in vitro. Laboratory trials showed that mycelium growth inhibition of Fusarium wilt fungus was correlated to the increase of the concentration of culture filtrate. All dilutions showed efficiency in reducing the growth of Fusarium oxysporum f.sp. lycopersici. The greatest nematicidal activity was observed at 50, 75, and 100% filtrate dilutions. The egg hatching percentage reached 42%, and the juvenile’s corrected mortality registered 90% for the above treatments. In greenhouse experiment, the biocontrol agent fungus enhanced significantly tomato growth components (height and weight of plant and root). The multiplication rate of root-knot nematode and the Fusarium wilt disease incidence declined significantly with soil application of V. leptobactrum as with chemical treatments. The isolate HR1 was efficient to control wilt disease complex caused by M. javanica and Fusarium oxysporum f.sp. lycopersici.

This is a preview of subscription content, log in to check access.


  1. Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18:265–267

  2. Amin N (2013) Investigation of culture filtrate of endophytic fungi Nigrospora sp. isolate RS 10 in different concentrations towards root-knot nematode Meloidogyne spp. Indian J Sci Technol 6(9):5177–5181

  3. Causse M, Buret M, Robini K, Verschave P (2003) Inheritance of nutritional and sensory quality traits in fresh market tomato and relation to consumer preferences. J Food Sci 68(7):2342–2350

  4. Cayrol J, Djian C (1990) Etude de la toxicité de Fusarium roseum var arthrosporioides pour le nématode Meloidogyne arenaria. Comptes rendus de l’Académie d’agriculture de France 76(8):121–129

  5. De Grisse AT (1969) Redescription ou modification de quelques techniques utilisée dans l’étude des nématodes phytoparasitaires. Mededelingen Rijksfaculteti der Landbouveten Gent:351–369

  6. El-Shennawy MZ, Khalifa EZ, Ammar MM, Mousa EM, Hafez SL (2012) Biological control of the disease complex on potato caused by root-knot nematode and Fusarium wilt fungus. Nematol Mediterr 40:169–172

  7. El-Sherif AG, Elwakil MA (1991) Interaction between Meloidogyne incognita and Agrobacterium tumefaciens or Fusarium oxysporum f. sp. lycopersici on tomato. J Nematol 23(2):239–242

  8. FAO (2003) Organic agriculture and climate change. Rome: Food and Agriculture Programme, United Nations. Environment and Natural Resources Series no. 4.

  9. Hajji L, Regaieg H, M’Hamdi-Boughalleb N, Horrigue-Raouani N (2016) Studies on disease complex incidence of Meloidogyne javanica and Fusarium oxysporum f. sp. lycopersici on resistant and susceptible tomato cultivars. J Agric Sci Food Technol 2(4):41–48

  10. Hallman J, Sikora RA (1994) In vitro and in vivo control of Meloidogyne incognita with culture filtrates from non-pathogenic Fusarium oxysporum on tomato. J Nematol 26(1):102

  11. Hayashi M, Wada K et al (1981) New nematicidal metabolites from fungus, Irpex lactus. Agric Biol Chem 45(6):1527–1529

  12. Horrigue-Raouani N (2003) Variabilité de la réaction Hôte parasite dans le cas des Meloidogyne spp. (Nematoda: Meloidogynidae) Thèse principale, p 222

  13. Hussey RS, Barker KR (1973) A comparison of methods of collecting inocula of Meloidogyne spp. including a new technique. Plant Dis Rep 57:1025–1028

  14. Hussey RS, Janssen GJW (2002) Root-knot nematode: Meloidogyne species. In: Starr JL, Cook R, Bridge J (eds) Plant resistance to parasitic nematodes. CAB International, Wallingford, pp 43–70

  15. Janssen AM, Scheffer JJC et al (1986) Antimicrobial activity of essential oil: 1976-86 literature review aspect of test methods. Planta Med 53:395–398

  16. Leslie JF, Summerell BA (2006) The fusarium laboratory manual. Blackwell Publishing Ltd, Iowa

  17. Moens M, Perry R, Starr J (2009) Meloidogyne species-a diverse group of novel and important parasites. In: Perry RN, Moens M, Starr JL (eds) Root-knot nematodes, 1. Wallingford, pp 483

  18. Mohammedi Z (2005) Etude de pouvoir antimicrobien et antioxydant des huiles essentielles et flavonoides de quelques plantes de la région de Tlemcen. Magistère Université Abou Bakr Belkaid Tlemcen, p 105

  19. Nene YL, Thapliyal PN (1983) Fungicides in plant disease control. Oxford and IBH Publ. Co., New Delhi 507 pp

  20. Netscher C, Sikora RA (1990) Nematode parasites of vegetables. In: Luc M, Sikora RA, Bridge J (eds) plant parasitic nematodes in subtropical and tropical agriculture. CAB International, London, pp 237–283

  21. Park J, Seo Y, Kim YH (2014) Biological control of Meloidogyne hapla using an antagonistic bacterium. Plant Pathol J 30:288–298

  22. Regaieg H, Ciancio A, Horrigue-Raouani N, Brasso G, Rosso L (2010) Effects of culture filtrates from the nematyophagous fungus Verticillium leptobactrum on viability of the root-knot nematode Meloidogyne incognita. World J Microbiol Biotechnol 26:2285–2289

  23. Regaieg H, Ciancio A, Raouani NH, Rosso L (2011) Detection and biocontrol potential of Verticillium leptobactrum parasitizing Meloidogyne spp. World J Microbiol Biotechnol 7(27):1615–1623

  24. Schuster R-P (1992) Untersuchungen zur biologischen Bekämpfung des Kartoffelzysten-nematoden Globodera pallida (Stone) mit eipathogenen Pilzen unter Berücksichtigung von deren Wirkungsweise sowie biotischen und abiotischen Faktoren. Diss, Bonn

  25. Seinhorst JW (1967) The relationships between population increase and population density in plant parasitic nematodes. II Sedentary nematodes. Nematologica 13:157–171

  26. Siddiqui ZA, Mahmood I (1996) Biological control of plant parasitic nematodes by fungi: a review. Bioresour Technol 58(3):229-239

  27. Siddiqui IA, Ehteshamul-Haque S, Ghaffar A (1999) Root tip treatment with Pseudomonas aeruginosa and Trichoderma spp. in the control of root-rot disease complex in chili (Capsicum annum L.) Pak J Nematol 17:67–75

  28. Song W, Zhou L, Yang C, Cao X, Zhang L, Liu X (2004) Tomato fusarium wilt and its chemical control strategies in a hydroponic system. Crop Prot 23:243–247

  29. Taylor CE (1990) Nematode interactions with other pathogens. Ann Appl Biol 116:405–416

  30. Van Lenteren JC (2003) Commercial availability of biological control agents. In: Van Lenteren JC (ed) Quality control and production of biological control agents: theory and testing procedures. CAB International, Wallingford, pp 167–179, ch. 11

  31. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322

  32. Zareen A, Siddiqui IA et al (2001) Observations on the nematicidal effect of fusarium solani on the root-knot nematode Meloidogyne Javanica. J Plant Pathol 83(3):207–214

Download references

Author information

Correspondence to Lobna Hajji-Hedfi.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hajji-Hedfi, L., Regaieg, H., Larayedh, A. et al. Biological control of wilt disease complex on tomato crop caused by Meloidogyne javanica and Fusarium oxysporum f.sp. lycopersici by Verticillium leptobactrum . Environ Sci Pollut Res 25, 18297–18302 (2018).

Download citation


  • Biocontrol
  • Verticillium leptobactrum
  • Root-knot nematode
  • Fusarium wilt fungus
  • Tomato