Advertisement

Environmental Science and Pollution Research

, Volume 24, Issue 36, pp 27767–27777 | Cite as

Low-dose combined exposure of nanoparticles and heavy metal compared with PM2.5 in human myocardial AC16 cells

  • Lin Feng
  • Xiaozhe Yang
  • Collins Otieno Asweto
  • Jing Wu
  • Yannan Zhang
  • Hejing Hu
  • Yanfeng Shi
  • Junchao DuanEmail author
  • Zhiwei Sun
Research Article

Abstract

The co-exposure toxicity mechanism of ultrafine particles and pollutants on human cardiovascular system are still unclear. In this study, the combined effects of silica nanoparticles (SiNPs) and/or carbon black nanoparticles (CBNPs) with Pb(AC)2 compared with particulate matter (PM)2.5 were investigated in human myocardial cells (AC16). Our study detected three different combinations of SiNPs and Pb(AC)2, CBNPs and Pb(AC)2, and SiNPs and CBNPs compared with PM2.5 at low-dose exposure. Using PM2.5 as positive control, our results suggested that the combination of SiNPs and Pb(AC)2/CBNPs could increase the production of reactive oxygen species (ROS), lactate dehydrogenase leakage (LDH), and malondialdehyde (MDA) and decrease the activities of superoxide dismutase (SOD) and glutathione (GSH); induce inflammation by the upregulation of protein CRP and TNF-α, and apoptosis by the upregulation of protein caspase-3, caspase-9, and Bax while the downregulation of protein Bcl-2; and trigger G2/M phase arrest by the upregulation of protein Chk2 and downregulation of protein Cdc2 and cyclin B1. In addition, the combination of CBNPs and Pb(AC)2 induced a significant increase in MDA and reduced the activities of ROS, LDH, SOD, and GSH, with G1/S phase arrest via upregulation of Chk1 and downregulation of CDK6 and cyclin D1. Our data suggested that the additive interaction and synergistic interaction are the major interaction in co-exposure system, and PM2.5 could trigger more severe oxidative stress, G2/M arrest, and apoptosis than either co-exposure or single exposure.

Keywords

Silica nanoparticles Carbon black nanoparticles Pb(AC)2 Combined cardiovascular toxicity Human myocardial cells 

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (Nos. 81230065, 81571130090) and Scientific Research Common Program of Beijing Municipal Commission of Education (KM201610025006).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Bell ML, Dominici F, Ebisu K et al (2007) Spatial and temporal variation in PM2.5 chemical composition in the United States for health effects studies. Environ. Health Perspect 115:989–995CrossRefGoogle Scholar
  2. Boisa N, Elom N, Dean JR et al (2014) Development and application of an inhalation bioaccessibility method (IBM) for lead in the PM10 size fraction of soil. Environ Int 70:132–142CrossRefGoogle Scholar
  3. Bourdon JA, Saber AT, Jacobsen NR et al (2013) Carbon black nanoparticle intratracheal instillation does not alter cardiac gene expression. Cardiovasc Toxicol 13:406–412CrossRefGoogle Scholar
  4. Breitner S, Liu L, Cyrys J et al (2011) Sub-micrometer particulate air pollution and cardiovascular mortality in Beijing, China. Sci. Total Environ 409:5196–5204CrossRefGoogle Scholar
  5. Chen Y, Poon RY (2008) The multiple checkpoint functions of CHK1 and CHK2 in maintenance of genome stability. Front Biosci 13:5016–5029Google Scholar
  6. Duan J, Yu Y, Li Y et al (2013a) Cardiovascular toxicity evaluation of silica nanoparticles in endothelial cells and zebrafish model. Biomaterials 34:5853–5862CrossRefGoogle Scholar
  7. Duan J, Yu Y, Li Y et al (2013b) Toxic effect of silica nanoparticles on endothelial cells through DNA damage response via Chk1-dependent G2/M checkpoint. PLoS One 8:e62087CrossRefGoogle Scholar
  8. Duan J, Yu Y, Li Y et al (2016a) Inflammatory response and blood hypercoagulable state induced by low level co-exposure with silica nanoparticles and benzo[a] pyrene in zebrafish (Danio rerio) embryos. Chemosphere 151:152–162CrossRefGoogle Scholar
  9. Duan J, Hu H, Li Q et al (2016b) Combined toxicity of silica nanoparticles and methylmercury on cardiovascular system in zebrafish (Danio rerio) embryos. Environ Toxicity Pharmacol 44:120–127CrossRefGoogle Scholar
  10. Duan J, Hu H, Li Q et al (2016c) Combined toxicity of silica nanoparticles and methylmercury on cardiovascular system in zebrafish (Danio rerio) embryos. Environ Toxicol Pharmacol 44:120–127CrossRefGoogle Scholar
  11. Forastiere F, Holgate ST, Kreyling WG, et al. (2009) Expert elicitation on ultrafine particles: likelihood of health effects and causal pathways. Part Fibre Toxicol 6, 19Google Scholar
  12. Franck U, Odeh S, Wiedensohler A et al (2011) The effect of particle size on cardiovascular disorder—the smaller the worse. Sci. Total Environ 409:4217–4221CrossRefGoogle Scholar
  13. Fruijtier-Polloth C (2012) The toxicological mode of action and the safety of synthetic amorphous silica—a nanostructured material. Toxicity 294:61–79CrossRefGoogle Scholar
  14. Grahame TJ, Schlesinger RB (2010) Cardiovascular health and particulate vehicular emissions: a critical evaluation of the evidence. Air Qual Atmos Health 3:3–27CrossRefGoogle Scholar
  15. Guo M, Xu X, Wang S et al (2013) In vivo biodistribution and synergistic toxicity of silica nanoparticles and cadmium chloride in mice. J Hazard Mater 260:780–788CrossRefGoogle Scholar
  16. HEI (2010) Traffic related air pollution: a critical review of the literature on emissions, exposure and health effects. HEI Special Report 17. Boston: Health Effects InstituteGoogle Scholar
  17. Hu H, Wu J, Li Q et al (2016) Fine particulate matter induces vascular endothelial activation via IL-6 dependent JAK1/STAT3 signaling pathway. Toxicol Res 5:946–953CrossRefGoogle Scholar
  18. Johnson NF, Jaramillo RJ (1997) cells with natural and man-made vitreous fibers. Environ Health Perspect 105:1143–1145CrossRefGoogle Scholar
  19. Kamata H, Tasaka S, Inoue K et al (2011) Carbon black nanoparticles enhance bleomycin-induced lung inflammatory and fibrotic changes in mice. Exp Biol Med (Maywood) 236:315–324CrossRefGoogle Scholar
  20. Knol AB, de Hartog JJ, Boogaard H, et al. (2009) Expert elicitation on ultrafine particles: likehood of health effects and causal pathways. Part Fibre Toxicol 6, 19Google Scholar
  21. Liang H, Jin C, Tang Y et al (2014) Cytotoxicity of silica nanoparticles on HaCaT cells. J Appl Toxicol 34:367–372CrossRefGoogle Scholar
  22. Lu X, Qian J, Zhou H et al (2011) In vitro cytotoxicity and induction of apoptosis by silica nanoparticles in human HepG2 hepatoma cells. Int J Nanomedicine 6:1889–1901Google Scholar
  23. Lu C, Yuan X, Li L et al (2015) Combined exposure to nano-silica and lead induced potentiation of oxidative stress and DNA damage in human lung epithelial cells. Excotoxicity Environ Safety 122:537–544CrossRefGoogle Scholar
  24. Lustberg M, Silbergeld E (2002) Blood lead levels and mortality. Arch Intern Med 162:2443–2449CrossRefGoogle Scholar
  25. Mai WX, Meng H (2013) Mesoporous silica nanoparticles: a multifunctional nano therapeutic system. Integr Biol (Camb) 5:19–28CrossRefGoogle Scholar
  26. Menke A, Muntner P, Batuman V et al (2006) Blood lead below 0.48 micromol/L (10 microg/dL) and mortality among US adults. Circulation 114:1388–1394CrossRefGoogle Scholar
  27. Miller MR, Shaw CA, Langrish JP (2012) From particles to patients: oxidative stress and the cardiovascular effects of air pollution. Futur Cardiol 8:577–602CrossRefGoogle Scholar
  28. Møller P, Mikkelsen L, Vesterdal LK et al (2011) Hazard identification of particulate matter on vasomotor dysfunction and progression of atherosclerosis. Critical Reviews Toxicity 41:339–368CrossRefGoogle Scholar
  29. Mroz RM, Schins RPF, Li H et al (2007) Nanoparticles carbon black driven DNA damage induces growth arrest and AP-1 and NF-κB DNA binding in lung epithelial A549 cell line. J Physiol Pharmacol 58:461–470Google Scholar
  30. Napierska D, Thomassen LC, Rabolli V et al (2009) Size-dependent cytotoxicity of monodisperse silica nanoparticles in human endothelial cells. Small 5:846–853CrossRefGoogle Scholar
  31. Navas-Acien A, Selvin E, Sharrett AR et al (2004) Lead, cadmium, smoking, and increased risk of peripheral arterial disease. Circulation 109:3196–3201CrossRefGoogle Scholar
  32. Navas-Acien A, Guallar E, Silbergeld EK et al (2007) Lead exposure and cardiovascular disease—a systematic review. Environ Health Perspect 115:472–482CrossRefGoogle Scholar
  33. Nicole AH, Gerard H, Milena SL et al (2011) Black carbon as an additional indicator of the adverse health effects of airborne particles compared with PM10 and PM2.5. Environ Health Perspect 119:1691–1699CrossRefGoogle Scholar
  34. Niwa Y, Hiura Y, Murayama T et al (2007) Nano-sized carbon black exposure exacerbates atherosclerosis in LDL-receptor knockout mice. Circ J 71:1157–1161CrossRefGoogle Scholar
  35. Patel MM, Chillrud SN, Correa JC et al (2010) Traffic-related particulate matter and acute respiratory symptoms among New York city area adolescents. Environ. Health Perspect 117:957–963Google Scholar
  36. Schober SE, Mirel LB, Graubard BI et al (2006) Blood lead levels and death from all causes, cardiovascular disease, and cancer: results from the NHANES III mortality study. Environ Health Perspect 114:1538–1541Google Scholar
  37. Shah AS, Langrish JP, Nair H et al (2013) Global association of air pollution and heart failure: a systematic review and meta-analysis. Lancet 382:1039–1048CrossRefGoogle Scholar
  38. Shannahan JH, Kodavanti UP, Brown JM (2012) Manufactured and airborne nanoparticles cardiopulmonary interactions: a review of mechanisms and the possible contribution of mast cells. Inhal Toxicol 24:320–339CrossRefGoogle Scholar
  39. Sioutas C, Delfino RJ, Singh M (2005) Exposure assessment for atmospheric ultrafine particles (UFPs) and implications in epidemiologic research. Environ. Health Perspect 113:947–955CrossRefGoogle Scholar
  40. Sosnovik DE, Nahrendorf M (2012) Cells and iron oxide nanoparticles on the move: magnetic resonance imaging of monocyte homing and myocardial inflammation in patients with ST-elevation myocardial infarction. Circ Cardiovasc Imaging 5(5):551–554CrossRefGoogle Scholar
  41. Sun Y, Zhuang G, Zhang W et al (2006) Characteristics and sources of lead pollution after phasing out leaded gasoline in Beijing. Atmos Environ 40:2973–2985CrossRefGoogle Scholar
  42. Sun L, Li Y, Liu X, Jin M, Zhang L et al (2011) Cytotoxicity and mitochondrial damage caused by silica nanoparticles. Toxicol in Vitro 25:1619–1629CrossRefGoogle Scholar
  43. Traboulsi H, Guerrina N, Iu M, et al. (2017) Inhaled pollutants: the molecular scene behind respiratory and systemic diseases associated with ultrafine particulate matter. Int J Mol Sci 18(2):243Google Scholar
  44. U.S. EPA (U.S. Environmental Protection Agency). (2006) Air quality criteria for lead (final). Available: http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=158823[accessed 27 November 2006]
  45. van Berlo D, Hullmann M, Schins RP (2012) Toxicity of ambient particulate matter. EXS 101:165–217Google Scholar
  46. Vesterdal LK, Mikkelsen L, Folkmann JK et al (2012) Carbon black nanoparticles and vascular dysfunction in cultured endothelial cells and artery segments. Toxicol Lett 214:19–26CrossRefGoogle Scholar
  47. Volk HE, Lurmann F, Penfold B et al (2013) Traffic-related air pollution, particulate matter, and autism. JAMA Psychiatry 70(1):71–77CrossRefGoogle Scholar
  48. Wang J, Engle S, Zhang Y (2011) A new in vitro system for activating the cell cycle checkpoint. Cell Cycle 10:500–506CrossRefGoogle Scholar
  49. Weichenthal S (2012) Selected physiological effects of ultrafine particles in acute cardiovascular morbidity. Environ Res 115:26–36CrossRefGoogle Scholar
  50. WHO. (2006) Air Quality Guideline. Global update 2005. Copenhagen: World Health Organization Regional Office for EuropeGoogle Scholar
  51. Wiseman CL, Zereini F (2014) Characterizing metal(loid) solubility in airborne PM10, PM2.5 and PM1 in Frankfurt, Germany using simulated lung fluids. Atmos Environ 89:282–289CrossRefGoogle Scholar
  52. Wu J, Shi Y, Asweto CO et al (2016) Co-exposure to amorphous silica nanoparticles and benzo[a]pyrene at low level in human bronchial epithelial BEAS-2B cells. Environ Sci Pollut Res Int 23(22):23134–23144CrossRefGoogle Scholar
  53. Yang Y, Li J (2014) Lipid, protein and poly (NIPAM) coated mesoporous silica nanoparticles for biomedical applications. Adv Colloid Interf Sci 207:155–163CrossRefGoogle Scholar
  54. Yu Y, Duan J, Li Y et al (2015) Combined toxicity of amorphous silica nanoparticles and methylmercury to human lung epithelial cells. Ecotoxicol Environ Saf 112:144–152CrossRefGoogle Scholar
  55. Zhang YN, Hu HJ, Shi YF et al (2017) 1H NMR-based metabolomics study on repeat dose toxicity of fine particulate matter in rats after Intratracheal instillation. Sci Total Environ 589:212–221CrossRefGoogle Scholar
  56. Zhao XB, Guo X, Sun JZ et al (2012) Experimental study on toxic effects of particulate matters from different Chinese cities on human vascular endothelial cells. J Environ Health 29:3–6Google Scholar
  57. Zhu J, Liao L, Zhu L et al (2013) Size-dependent cellular uptake efficiency, mechanism, and cytotoxicity of silica nanoparticles toward HeLa cells. Talanta 107:408–415CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Lin Feng
    • 1
    • 2
  • Xiaozhe Yang
    • 1
    • 2
  • Collins Otieno Asweto
    • 1
    • 2
  • Jing Wu
    • 1
    • 2
  • Yannan Zhang
    • 1
    • 2
  • Hejing Hu
    • 1
    • 2
  • Yanfeng Shi
    • 1
    • 2
  • Junchao Duan
    • 1
    • 2
    Email author
  • Zhiwei Sun
    • 1
    • 2
  1. 1.Department of Toxicity and Sanitary Chemistry, School of Public HealthCapital Medical UniversityBeijingPeople’s Republic of China
  2. 2.Beijing Key Laboratory of Environmental ToxicityCapital Medical UniversityBeijingPeople’s Republic of China

Personalised recommendations