Environmental Science and Pollution Research

, Volume 25, Issue 20, pp 19238–19246 | Cite as

An assessment of the potential use of compost filled plastic void forming units to serve as vents on historic landfills and related sites

  • Stephen J. Coupe
  • Ernest O. Nnadi
  • Fredrick U. MbanasoEmail author
  • Alan P. Newman
Developments in water management technologies and systems


Much of the solid municipal waste generated by society is sent to landfill, where biodegrading processes result in the release of methane, a major contributor to climate change. This work examined the possibility of installing a type of biofilter within paved areas of the landfill site, making use of modified pervious paving, both to allow the escape of ground gas and to avoid contamination of groundwater, using specially designed test models with provision for gas sampling in various chambers. It proposes the incorporation of an active layer within a void forming box with a view to making dual use of the pervious pavement to provide both a drainage feature and a ground gas vent, whilst providing an active layer for the oxidation of methane by microbial action. The methane removal was observed to have been effected by microbial oxidation and as such offers great promise as a method of methane removal to allow for development of landfills.


Landfills Waste Methane Methanotrophs Biodegradation Biofilter Pervious pavement 



The authors are grateful to the Environmental Protection Group (EPG) for funding this study.


  1. Abushammala MFM, Basri NEA, Irwan D, Younes MK (2014) Methane oxidation in landfill cover soils: a review. Asian J Atmos Environ 8-1:1–14CrossRefGoogle Scholar
  2. Arai H, Hadi A, Darung U, Limin SH, Hatano R, Inubushi K (2014) A methanotrophic community in a tropical peatland is unaffected by drainage and forest fires in a tropical peat soil. Soil Sci Plant Nutr 60:577–585CrossRefGoogle Scholar
  3. ATSDR (2011) ‘Chapter 5: landfill gas control measures’ ‘landfill gas primer—an overview for environmental health professionals’
  4. Barlaz ΜΑ, Green RB, Chanton JP, Glodsmith CD, Hater GR (2004) Evaluation of a biological active cover for mitigation of landfill gas emissions. Environ Sci Technol 38:4891–4899CrossRefGoogle Scholar
  5. Bentarzi Y, Ghenaim A, Terfous A, Wanko A, Hlawka F, Poulet JB (2010). Nouveau matériau utilisable en chaussée permeable et épuratoire dans les zones urbaines : estimation des caractéristiques hydrodynamiques 8th Int. Conf. Sustainable Techniques and Strategies in Urban Water Management,, Lyon, France, Groupe de Recherche Rhone-Alpes sur les Infrastructures et l'Eau. NOVATECH, 2010, CD ROMGoogle Scholar
  6. Bentarzi Y, Ghenaim A, Terfous A, Wanko A, Hlawka F, Poulet JB (2013) Hydrodynamic characteristics of a new permeable pavement material produced from recycled concrete and organic matter. Urban Water J 10-4:260–267CrossRefGoogle Scholar
  7. Bohn S, Brunke P, Gebert J, Jager J (2011) Improving the aeration of critical fine-grained landfill top cover material by vegetation to increase the microbial methane oxidation efficiency. Waste Management Science and Technology. Vol. 31-5, Special Thematic Issue “Landfill Gas Emission and Mitigation”Google Scholar
  8. Borjesson G, Chanton J, Svensson BH (2001) Methane oxidation in two Swedish landfill covers measured with carbon-13 to carbon-12 isotope ratios. J Environ Qual 30-2:369–376CrossRefGoogle Scholar
  9. Brad T, Braster M, Van Breukelen BM, Van Straalen NM, Rölling WFM (2008) Eukaryotic diversity in an anaerobic aquifer polluted with landfill leachate. Appl Environ Microbiol 74-13:3959–3968CrossRefGoogle Scholar
  10. Brandstätter BC, Keiblinger K, Wanek W, Zechmeister-Boltenstern S (2013) A closeup study of early beech litter decomposition: potential drivers and microbial interactions on a changing substrate. Plant Soil 371:139–154CrossRefGoogle Scholar
  11. Brandstätter C, Laner D, Johann Fellner F (2015) Carbon pools and flows during lab-scale degradation of old landfilled waste under different oxygen and water regimes. Waste Manag 40:100–111CrossRefGoogle Scholar
  12. Chanton J, Liptay K (2000) Seasonal variation in methane oxidation in a landfill cover soil as determined by an in situ stable isotope technique. Global biogeochem cycles 14-1:51–60CrossRefGoogle Scholar
  13. Charlesworth SM, Nnadi EO, Oyelola O, Bennet J, Warwick F, Jackson R, Lawson D (2012) Laboratory based experiments to assess the use of green and food based compost to improve water quality in a sustainable drainage (SUDS) device such as a swale. Sci Total Environ 424:337–343CrossRefGoogle Scholar
  14. Coupe SJ, Smith HG, Newman AP, Puehmeier T (2003) Biodegradation and microbial diversity within permeable pavements. Eur J Protistol 39:1–4CrossRefGoogle Scholar
  15. Crespo-Medina M, Meile CD, Hunter KS, Diercks A-R, Asper VL, Orphan VJ, Tavormina PL, Nigro LM, Battles JJ, Chanton JP, Shiller AM, Joung D-J, Amon RMW, Bracco A, Montoya JP, Villareal TA, Wood AM, Joye SB (2014) The rise and fall of methanotrophy following a deepwater oil-well blowout. Nat Geosci 7:423–427CrossRefGoogle Scholar
  16. Del CS, Mancebo U, Hettiaratchi JPA, Hurtado O (2010) Compost as a growth medium of methanotrophic bacteria. J Solid Waste Technol Manag 36-3:751Google Scholar
  17. Dever SA, Swarbrick GE, Stuetz RM (2011) Passive drainage and biofiltration of landfill gas: results of Australian field trial. Waste Manag 31(5):1029–1048CrossRefGoogle Scholar
  18. EA (2012) Environment Agency, ‘Rural Sustainable Drainage Systems (RSuDS)’
  19. Einola JM, Karhu AE, Rintala JA (2008) Mechanically-biologically treated municipal solid waste as a support medium for microbial methane oxidation to mitigate landfill greenhouse emissions. Waste Manag 28:97–111CrossRefGoogle Scholar
  20. EPA (1993) Environmental Protection Agency, Guidance Manual for Developing Best Management Practices (BMP), Document No. EPA-833-B-93-004
  21. EU (2009) ‘Landfill gas control—guidance on the landfill gas control requirements of the Landfill Directive’
  22. Fletcher TD, Shuster W, Hunt WF, Ashley R, Butler D, Arthur S, Trowsdale S, Barraud S, Semadeni-Davies A, Bertrand-Krajewski J, Mikkelsen PS, Rivard G, Uhl M, Dagenais D, Viklander M (2015) SUDS, LID, BMPs, WSUD and more—the evolution and application of terminology surrounding urban drainage. Urban Water J 12(7):525–542CrossRefGoogle Scholar
  23. Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60-2:439–471Google Scholar
  24. Hettiarachchi VC, Hettiaratchi PJ, Mehrotra AK, Kumar S (2011) Field-scale operation of methane biofiltration systems to mitigate point source methane emissions. Environ Pollut Vol 159-6:1715–1720CrossRefGoogle Scholar
  25. Holmes AJ, Roslev P et al (1999) Characterization of methanotrophic bacterial populations in soils showing atmospheric methane uptake. Appl Environ Microbiol 65-8:3312–3318Google Scholar
  26. Huang Q, Zhang Q, Cicek N, Nann D (2011) Biofilter: a promising tool for mitigating methane emission from manure storage. J Arid Land 3(1):61–70CrossRefGoogle Scholar
  27. Huber-Humer M, Gebert J, Hilger H (2008) Biotic systems to mitigate landfill methane emissions. Waste Manag Res 26-1:33–46CrossRefGoogle Scholar
  28. Juottonen H, Hynninen A, Nieminen M, Tuomivirta TT, Tuittila ES, Hannu Nousiainen H, Kell DK, Yrjälä K, Tervahauta A, Fritze H (2012) Methane-cycling microbial communities and methane emission in natural and restored peatlands. Appl Environ Microbiol 78-17:6386–6389CrossRefGoogle Scholar
  29. Liptay K, Chanton J, Czepiel P, Mosher B (1998) Use of stable isotopes to determine methane oxidation in landfill cover soils. J Geophys Res 103(D7):8243–8250Google Scholar
  30. Mancebo U, Hettiaratchi JPA (2015) Rapid assessment of methanotrophic capacity of compost-based materials considering the effects of air-filled porosity, water content and dissolved organic carbon. Bioresour Technol 177:125–133CrossRefGoogle Scholar
  31. Mbanaso FU, Coupe SJ, Charlesworth S, Nnadi EO (2013) Laboratory-based experiments to investigate the impact of glyphosate-containing herbicide on pollution attenuation and biodegradation in a model pervious paving system. Chemosphere 90-2:737–746CrossRefGoogle Scholar
  32. Meia J, Wanga L, Hana D, Zhaoa Y (2011) Methanotrophic community structure of aged refuse and its capability for methane bio-oxidation. J Environ Sci 23-5:868–874CrossRefGoogle Scholar
  33. Muenmee S, Chiemchaisri W, Chiemchaisri C (2015) Microbial consortium involving biological methane oxidation in relation to the biodegradation of waste plastics in a solid waste disposal open dump site. Int Biodeter Biodegrad 102:172–181CrossRefGoogle Scholar
  34. Murase J, Noll M, Frenzel P (2006) Impact of protists on the activity and structure of the bacterial community in a rice field soil. Appl Environ Microbiol 72-8:5436–5444CrossRefGoogle Scholar
  35. Newman AP, Puehmeier T, Kwok V, Lam M, Coupe SJ, Shuttleworth A, Pratt CJ (2004a) Protecting groundwater with oil retaining pervious pavements: historical perspectives, Limitations and Recent Developments. Q J Eng Geol 37-4:283–291CrossRefGoogle Scholar
  36. Newman AP, Puehmeier T, Schwermer C, Shuttleworth A, Wilson S, Todorovic Z, and Baker R (2004b) ‘The next generation of oil trapping porous pavement systems’ 5th Int. Conf. Sustainable Techniques and Strategies in Urban Water Management, Lyon, France, Groupe de Recherche Rhone-Alpes sur les Infrastructures et l'Eau. NOVATECH, 2004, 803–810Google Scholar
  37. Newman AP, Nnadi EO, Duckers L, Cobley AJ (2011) Further developments in self-fertilising geotextiles for use in pervious pavements. Water Sci Technol 64-6:1333–1339CrossRefGoogle Scholar
  38. Nnadi EO, Coupe SJ, Sañudo-Fontaneda LA, Rodriguez-Hernandez J (2014) An evaluation of enhanced geotextile layer in permeable pavement to improve stormwater infiltration and attenuation. Int J Pavement Eng 15-10:925–932CrossRefGoogle Scholar
  39. Novarino G, Warren A, Butler H, Lambourne G, Boxshall A, Bateman J, Kinner NE, Harvey RW, Mosse RA, Teltsch B (1997) Protistan communities in aquifers: a review. FEMS Microbiol Rev 20(3-4):261–275CrossRefGoogle Scholar
  40. Omar H, Rohani S (2015) Treatment of landfill waste, leachate and landfill gas: a review. Front Chem Sci Eng 9-1:15–32CrossRefGoogle Scholar
  41. Orozco AM, Nizami AS, Murphy JD, Groom E (2013) Optimizing the thermophilic hydrolysis of grass silage in a two-phase anaerobic digestion system. Bioresour Technol 143:117–125CrossRefGoogle Scholar
  42. Philopoulos A, Ruck J, McCartney D, Felske C (2009) A laboratory-scale comparison of compost and sand--compost--perlite as methane-oxidizing biofilter media. Waste Manag Res 27:138–146CrossRefGoogle Scholar
  43. Pratt CJ, Newman AP, Bond PC (1999) Mineral oil bio-degradation within a permeable pavement: long term observations. Water Sci Technol 29-2:103–109CrossRefGoogle Scholar
  44. Puehmeier T (2009) “Source control devices used in sustainable urban drainage for hard paved areas”, Unpublished PhD thesis, Coventry University, CoventryGoogle Scholar
  45. Puehmeier T and Newman AP (2008). ‘Assessment and monitoring of the oil retention performance of the gullyceptor treatment system’ report on the test of a source control oil separation system
  46. Qasaimeh A, Abdallah/Qasaimeh MR, Hani FB (2016) A review on biogas interception processes in municipal landfill. J Environ Sci Technol 9:1–25CrossRefGoogle Scholar
  47. Rachor I, Gebert J, Gröngröft A, Pfeiffer E-M (2011) Assessment of the methane oxidation capacity of compacted soils intended for use as landfill cover materials. Waste Manag 31-5:833–842CrossRefGoogle Scholar
  48. Sañudo Fontaneda LA (2014) The analysis of rainwater infiltration into permeable pavements, with concrete blocks and porous mixtures, for the source control of flooding. PhD Thesis, University of Cantabria, Spain. Available from:
  49. Scheutz C, Fredenslund AM, Chanton J, Pedersen GB, Kjeldsen P (2011) Mitigation of methane emission from Fakse landfill using a biowindow system. Waste Manag 31-5:1018–1028CrossRefGoogle Scholar
  50. Schroth MH, Eugster W, Gómez KE, Gonzalez-Gil G, Niklaus PA, Oester P (2012) Above and below-ground methane fluxes and methanotrophic activity in a landfill-cover soil. Waste Manag 32:879–889CrossRefGoogle Scholar
  51. Segers R (1998) Methane production and methane consumption: a review of processes underlying wetland methane fluxes. Biogeochemistry 41:23–51CrossRefGoogle Scholar
  52. Straka F, Crha J, Musilova M, et al (1999) LFG biofilters on old landfills in: proceedings of Sardinia 99, 7th international waste management and landfill symposium, S Margherita di Pula, Cagliari, Italy, 4–9 October 1999, USA: SWANA-Solid Waste Association of North America, 507–516.USGoogle Scholar
  53. Surroop D and Mohee R (2011) ‘Power generation from landfill gas’ 2nd International Conference on Environmental Engineering and Applications IPCBEE Vol. 17 © IACSIT Press, SingaporeGoogle Scholar
  54. USEPA (2011) ‘Available and emerging technologies for reducing greenhouse gas emissions from municipal solid waste landfills’ Office of Air and Radiation June 2011
  55. Visvanathan C, Pokhrel D, Cheimchaisri W, Hettiaratchi JPA, Wu JS (1999) Methanotrophic activities in tropical landfill cover soils: effects of temperature, moisture content and methane concentration. Waste Manage Res 17-4:313–323CrossRefGoogle Scholar
  56. Woods-Ballard B, Wilson S, Udale-Clarke H, Illman S, Scott T, Ashley R, Kellagher R (2015) C753 the SuDS manual. Construction Industry Research and Information Association, London file:///C:/Users/cuonline.elu/Downloads/c753.pdfGoogle Scholar
  57. Woolf D, Amonette JE, Street-Perrott FA, Lehmann J, Joseph S (2010) Sustainable biochar to mitigate global climate change. Nat Commun 1:56CrossRefGoogle Scholar
  58. Zebulun HO, Inyang HI, Hilger H (2013) Molecular and biological techniques used in landfill investigations: a mini-review. Biotechnol Mol Biol Rev 8-2:35–42CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Stephen J. Coupe
    • 1
  • Ernest O. Nnadi
    • 1
  • Fredrick U. Mbanaso
    • 1
    Email author
  • Alan P. Newman
    • 1
  1. 1.Coventry UniversityCoventryUK

Personalised recommendations