Environmental Science and Pollution Research

, Volume 25, Issue 11, pp 10456–10470 | Cite as

Managing wastes as green resources: cigarette butt-synthesized pesticides are highly toxic to malaria vectors with little impact on predatory copepods

  • Kadarkarai Murugan
  • Udaiyan Suresh
  • Chellasamy Panneerselvam
  • Rajapandian Rajaganesh
  • Mathath Roni
  • Al Thabiani Aziz
  • Jiang-Shiou Hwang
  • Kuppusamy Sathishkumar
  • Aruliah Rajasekar
  • Suresh Kumar
  • Abdullah A. Alarfaj
  • Akon Higuchi
  • Giovanni Benelli
Plant-borne compounds and nanoparticles: challenges for medicine, parasitology and entomology

Abstract

The development of novel mosquito control tools is a key prerequisite to build effective and reliable Integrated Vector Management strategies. Here, we proposed a novel method using cigarette butts for the synthesis of Ag nanostructures toxic to young instars of the malaria vector Anopheles stephensi, chloroquine (CQ)-resistant malaria parasites Plasmodium falciparum and microbial pathogens. The non-target impact of these nanomaterials in the aquatic environment was evaluated testing them at sub-lethal doses on the predatory copepod Mesocyclops aspericornis. Cigarette butt-synthesized Ag nanostructures were characterized by UV–vis and FTIR spectroscopy, as well as by EDX, SEM and XRD analyses. Low doses of cigarette butt extracts (with and without tobacco) showed larvicidal and pupicidal toxicity on An. stephensi. The LC50 of cigarette butt-synthesized Ag nanostructures ranged from 4.505 ppm (I instar larvae) to 8.070 ppm (pupae) using smoked cigarette butts with tobacco, and from 3.571 (I instar larvae) to 6.143 ppm (pupae) using unsmoked cigarette butts without tobacco. Smoke toxicity experiments conducted against adults showed that unsmoked cigarette butts-based coils led to mortality comparable to permethrin-based positive control (84.2 and 91.2%, respectively). A single treatment with cigarette butts extracts and Ag nanostructures significantly reduced egg hatchability of An. stephensi. Furthermore, the antiplasmodial activity of cigarette butt extracts (with and without tobacco) and synthesized Ag nanostructures was evaluated against CQ-resistant (CQ-r) and CQ-sensitive (CQ-s) strains of P. falciparum. The lowest IC50 values were achieved by cigarette butt extracts without tobacco, they were 54.63 μg/ml (CQ-s) and 63.26 μg/ml (CQ-r); while Ag nanostructure IC50 values were 72.13 μg/ml (CQ-s) and 77.33 μg/ml (CQ-r). In MIC assays, low doses of the Ag nanostructures inhibited the growth of Bacillus subtilis, Klebsiella pneumoniae and Salmonella typhi. Finally, the predation efficiency of copepod M. aspericornis towards larvae of An. stephensi did not decrease in a nanoparticle-contaminated environment, if compared to control predation assays. Overall, the present research would suggest that an abundant hazardous waste, such as cigarette butts, can be turned to an important resource for nanosynthesis of highly effective antiplasmodials and insecticides.

Keywords

Anopheles stephensi Ecotoxicology Mesocyclops aspericornis Insecticide Mosquito Plasmodium falciparum Silver nanoparticles 

Notes

Acknowledgements

The authors are grateful to the International Scientific Partnership Program ISPP at King Saud University for funding through ISPP no. 0062.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

References

  1. Aarthi N, Murugan K (2010) Larvicidal and smoke repellent activities of Spathodea campanulata P. Beauv. against the malarial vector, Anopheles stephensi (Diptera: Culicidae). J Phytol 2:61–69Google Scholar
  2. Ahmed S, Ahmad M, Ikram S (2014) Chitosan: a natural antimicrobial agent–a review. J Appl Chem 3:493–503Google Scholar
  3. Ahmed S, Ikram S (2015) Chitosan & its derivatives: a review in recent innovations. Int J Sci Res 6:14–30Google Scholar
  4. Anitha J, Murugan K, Panneerselvam C, Madhiyazhagan P, Dinesh D, Vadivalagan C, Aziz AT, Chandramohan B, Suresh U, Rajaganesh R, Subramaniam J, Nicoletti M, Higuchi A, Alarfaj AA, Munusamy MA, Kumar S, Benelli G (2016) Earthworm-mediated synthesis of silver nanoparticles: a potent tool against hepatocellular carcinoma, Plasmodium falciparum parasites and malaria mosquitoes. Parasitol Int 65:276–284CrossRefGoogle Scholar
  5. Ankanna S, Prasad TNVKV, Elumalai EK, Savithramma N (2010) Production of biogenic silver nanoparticles using Boswellia ovalifoliolata stem bark. Dig J Nanomater Biostruct 5(2):369–372Google Scholar
  6. Ashokan AP, Paulpandi M, Dinesh D, Murugan K, Vadivalagan C, Benelli G (2017) Toxicity on dengue mosquito vectors through Myristica fragrans-synthesized zinc oxide nanorods, and their cytotoxic effects on liver cancer cells (HepG2). J Clust Sci 28:205–226CrossRefGoogle Scholar
  7. Aswan Ali AM, Syed Ali M, Vijaya PP, Yogananth N, Munees Prabhu M (2014) Green synthesis of silver nanoparticles from Ocimum sanctum against mosquito vectors for malaria and dengue. IJPSN 7(4):29–14Google Scholar
  8. Bagavan A, Rahuman AA, Kamaraj C, Kaushik NK, Mohanakrishnan D, Sahal D (2011) Antiplasmodial activity of botanical extracts against Plasmodium falciparum. Parasitol Res 108(5):1099–1109Google Scholar
  9. Banumathi B, Vaseeharan B, Periyannan R, Prabhu NM, Ramasamy P, Murugan K, Canale A, Benelli G (2017) Exploitation of chemical, herbal and nanoformulated acaricides to control the cattle tick, Rhipicephalus (Boophilus) microplus–a review. Vet Parasitol.  https://doi.org/10.1016/j.vetpar.2017.07.021
  10. Baun A, Hartmann NB, Grieger K, Kusk KO (2008) Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing. Eco Toxicol 17:387–395Google Scholar
  11. Becker K, Tilley L, Vennerstrom JL, Roberts D, Rorerson S, Ginsburg H (2004) Oxidative stress in malaria parasite-infected erythrocytes: host-parasite interactions. Int J Parasitol 34:163–189CrossRefGoogle Scholar
  12. Benelli G (2015a) Research in mosquito control: current challenges for a brighter future. Parasitol Res 114:2801–2805CrossRefGoogle Scholar
  13. Benelli G (2015b) Plant-borne ovicides in the fight against mosquito vectors of medical and veterinary importance: a systematic review. Parasitol Res 114:3201–3212CrossRefGoogle Scholar
  14. Benelli G (2016a) Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: a review. Parasitol Res 115:23–34CrossRefGoogle Scholar
  15. Benelli G (2016b) Green synthesized nanoparticles in the fight against mosquito-borne diseases and cancer—a brief review. Enzym Microb Technol 95:58–68CrossRefGoogle Scholar
  16. Benelli G, Mehlhorn H (2016) Declining malaria, rising dengue and Zika virus: insights for mosquito vector control. Parasitol Res 115:1747–1754CrossRefGoogle Scholar
  17. Benelli G, Lo Iacono A, Canale A, Mehlhorn H (2016) Mosquito vectors and the spread of cancer: an overlooked connection? Parasitol Res 115:2131-2137Google Scholar
  18. Benelli G, Beier J (2017) Current vector control challenges in the fight against malaria. Acta Trop 174:91–96CrossRefGoogle Scholar
  19. Benelli G (2017) Commentary: data analysis in bionanoscience—issues to watch for. J Clust Sci 28:11-14Google Scholar
  20. Benelli G, Romano D (2017) Mosquito vectors of Zika virus. Entomol Gen.  https://doi.org/10.1127/entomologia/2017/0496
  21. Benelli G, Lukehart CM (2017) Special issue: applications of green-synthesized nanoparticles in pharmacology, parasitology and entomology. J Clust Sci 28:1–2 Google Scholar
  22. Benelli G, Maggi F, Pavela R, Murugan K, Govindarajan M, Vaseeharan B, Petrelli R, Cappellacci L, Kumar S, Hofer A, Youssefi MR, Alarfaj AA, Hwang JS, Higuchi A (2017a) Mosquito control with green nanopesticides: towards the One Health approach? A review of non-target effects. Environ Sci Poll Res.  https://doi.org/10.1007/s11356-017-9752-4
  23. Benelli G, Pavela R, Maggi F, Petrelli R, Nicoletti M (2017b) Commentary: making green pesticides greener? The potential of plant products for nanosynthesis and pest control. J Clust Sci 28:3–10CrossRefGoogle Scholar
  24. Benelli G, Maggi F, Romano D, Stefanini C, Vaseeharan B, Kumar S, Higuchi A, Alarfaj AA, Mehlhorn H, Canale A (2017c) Nanoparticles as effective acaricides against ticks – a review. Ticks Tick-borne Dis.  https://doi.org/10.1016/j.ttbdis.2017.08.004
  25. Benelli G, Maggi F, Petrelli R, Canale A, Nicoletti M, Rakotosaona R, Rasoanaivo P (2017d) Not ordinary antimalarial drugs: Madagascar plant decoctions potentiating the chloroquine action against Plasmodium parasites. Ind Crop Prod 103:19–38Google Scholar
  26. Burfield T, Reekie SL (2005) Mosquitoes, malaria and essential oils. Int J Aroma 15:30–41CrossRefGoogle Scholar
  27. Campbell FL, Sullivan WW, Smith LN (1933) The relative toxicity of nicotine, anabasine and methyl anabasine and lupinine for culicine mosquito larvae. J Econ Entomol 26:500–509CrossRefGoogle Scholar
  28. Dieng H, Rajasaygar S, Ahmad AH, Rawi CSMD, Ahmad H, Satho T, Miake F, Zuharah WF, Fukumitsu Y, Ramli AS, Hamid SA, Vargas REM, Majid AHA, Fadzly N, Kassim NFA, Hashim NA, Ghani IA, Abang FB, AbuBakar S (2014) Indirect effects of cigarette butt waste on the dengue vector Aedes aegypti (Diptera: Culicidae). Acta Trop 130:123–130CrossRefGoogle Scholar
  29. Dieng H, Rajasaygar S, Ahmad AH, Ahmad H, Rawi CSM, Zuharah WF et al (2013) Turning cigarette butt waste into an alternative control tool against an insecticide-resistant mosquito vector. Acta Trop 128:584–590Google Scholar
  30. Dieng H, Saifur R, Abu Hassan A, Rawi CS, Boots M, Satho T, Zuharah WF, Fadzly N, Althbyani A, Miake F, Jaal Z, Abubakar S (2011) Discarded cigarette buds attract females and kill the progeny of Aedes albopictus. J Am Mosq Contr Assoc 27:263–271CrossRefGoogle Scholar
  31. Dinesh D, Murugan K, Madhiyazhagan P, Panneerselvam C, Nicoletti M, Jiang W, Benelli G, Chandramohan B, Suresh U (2015) Mosquitocidal and antibacterial activity of green-synthesized silver nanoparticles from Aloe vera extracts: towards an effective tool against the malaria vector Anopheles stephensi? Parasitol Res 114:1519–1529CrossRefGoogle Scholar
  32. Dinesh Kumar S, Singaravelu G, Ajithkumar S, Murugan K, Nicoletti M, Benelli G (2017) Mangrove-Mediated Green Synthesis of Silver Nanoparticles with High HIV-1 Reverse Transcriptase Inhibitory Potential. J Clust Sci 28(1):359-367Google Scholar
  33. Fabrega J, Luoma SN, Tyler CR, Galloway TS, Lead JR (2011) Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int 37:517–531CrossRefGoogle Scholar
  34. Fayaz AM, Balaji K, Girilal MYR, Kalaichelvan PT, Venketesan R (2010) Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomed Nanotechnol Biol Med 6:103–109CrossRefGoogle Scholar
  35. Finney DJ (1971) Probit analysis. Cambridge University, London, pp 68–78Google Scholar
  36. Foldbjerg R, Xiumei Jiang X, Teodora Miclaus T, Chen CC, Herman Autrup H, Beer C (2015) Silver nanoparticles–wolves in sheep’s clothing? Toxicol Res 4:563–575CrossRefGoogle Scholar
  37. Frederich M, Dogné JM, Angenot L, De Mol P (2002) New trends in anti-malarial agents. Curr Med Chem 9:1435–1456CrossRefGoogle Scholar
  38. Fuoco FC, Buonanno G, Stabile L, Vigo P (2014) Influential parameters on particle concentration and size distribution in the mainstream of e-cigarettes. Environ Poll 184:523–529CrossRefGoogle Scholar
  39. Gong P, Li H, He X, Wang K, Hu J, Tan W, Zhang S, Yang X (2007) Preparation and antibacterial activity of Fe3O4@Ag nanoparticles. Nanotechnol 18:285–604Google Scholar
  40. Govindarajan M, Mathivanan T, Elumalai K, Krishnappa K, Anandan A (2011) Mosquito larvicidal, ovicidal, and repellent properties of botanical extracts against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 109:353–367CrossRefGoogle Scholar
  41. Govindarajan M, Benelli G (2016) Eco-friendly larvicides from Indian plants: Effectiveness of lavandulyl acetate and bicyclogermacrene on malaria, dengue and Japanese encephalitis mosquito vectors. Ecotoxicol Environ Saf 133:395–402Google Scholar
  42. Govindarajan M, Mohan R, Hoti SL, Bhattacharyya A, Benelli G (2016) Eugenol, α-pinene and β-caryophyllene from Plectranthus barbatus essential oil as eco-friendly larvicides against malaria, dengue and Japanese encephalitis mosquito vectors. Parasitol Res 115(2):807–815Google Scholar
  43. Ileke KD, Oyeniyi EA, Ogungbite OC, Mobolade Adesina J (2015) Nicotiana tabacum a prospective mosquitocide in the management of Anopheles gambiae (Giles). Int J Mosq Res 2:19–23Google Scholar
  44. Jarvis TA, Miller RJ, Lenihan HS, Bielmyer GK (2013) Toxicity of ZnO nanoparticles to the copepod Acartia tonsa, exposed through a phytoplankton diet. Environ Toxicol Chem 32:1264–1269CrossRefGoogle Scholar
  45. Jasuja ND, Gupta DK, Reza M, Joshi SC (2014) Green synthesis of AgNPs stabilized with biowaste and their antimicrobial activities. Braz J Microbiol 45:1325–1332Google Scholar
  46. Jayaraman Theerthagiri, Jagan Madhavan, Kadarkarai Murugan, Christina Mary Samidoss, Suresh Kumar, Akon Higuchi, Giovanni Benelli (2017) Flower-Like copper sulfide nanocrystals are highly effective against chloroquine-resistant plasmodium falciparum and the malaria vector anopheles stephensi. J ClustGoogle Scholar
  47. Kalimuthu K, Lin SM, Tseng LC, Murugan K, Hwang JS (2014) Bio-efficacy potential of seaweed Gracilaria firma with copepod, Megacyclops formosanus for the control larvae of dengue vector Aedes aegypti. Hydrobiologia 741:113–123CrossRefGoogle Scholar
  48. Kamareddine L (2012) The biological control of the malaria vector. Toxins (Basel) 4:748–767CrossRefGoogle Scholar
  49. Kaviya S, Santhanalakshmi J, Viswanathan B, Muthumary J, Srinivasan K (2011) Biosynthesis of silver nanoparticles using Citrus sinensis peel extract and its antibacterial activity. Spectrochim Acta A Mol Biomol Spectrosc 79:594–598CrossRefGoogle Scholar
  50. Khandelwal N, Singh A, Jain D, Upadhyay MK, Verma HN (2010) Green synthesis of silver nanoparticles using Argimone maxicana leaf extract and evaluation of their activity. Digest J Nano Bios 5:483–489Google Scholar
  51. Kharissova OV, Dias HVR, Kharisov BI, Perez BO, Perez VMJ (2013) The greener synthesis of nanoparticles. Trends Biotechnol 31:240–248CrossRefGoogle Scholar
  52. Kovendan K, Murugan K, Panneerselvam C, Aarthi N, Mahesh Kumar P, Subramaniam J, Amerasan D, Kalimuthu K, Vincent S (2012) Antimalarial activity of Carica papaya (Family: Caricaceae) leaf extract against Plasmodium falciparum. Asian Pac J Trop Dis 306–311Google Scholar
  53. Kumar R, Sharon M, Choudhary AK (2010) Nanotechnology in agricultural diseases and food safety. J Phytol 2:83–92Google Scholar
  54. Kumar SD, Singaravelu G, Ajithkumar S, Murugan K, Nicoletti M, Benelli G (2017) Mangrove-Mediated Green Synthesis of Silver Nanoparticles with High HIV-1 Reverse Transcriptase Inhibitory Potential. J Clust Sci 28(1):359–367Google Scholar
  55. Kuppusamy C, Murugan K (2008) Oviposition deterrent ovicidal and gravid mortality effects of ethanolic extract of Andrographis paniculata Nees against the malarial vector Anopheles stephensi L (Diptera: Culicidae). Entomol Res 38:119–125CrossRefGoogle Scholar
  56. Kuppusamy C, Murugan K (2009) Mosquitocidal effect of Andographis paniculata Nees against the malaria vector Anopheles stephensi Liston Diptera: Culicidae. Int Jour Integr Biol 5:75–81Google Scholar
  57. Lee J (2012) Get your butt off the ground: consequences of cigarette waste and litter-reducing methods. Pomona College (Senior Thesis)Google Scholar
  58. Mackay J, Eriksen M, Shafey O (2006) The tobacco atlas, 2nd edn. The American Cancer Society, AtlantaGoogle Scholar
  59. Madhiyazhagan P, Murugan K, Naresh Kumar A, Nataraj T, Subramaniam J, Chandramohan B, Panneerselvam C, Dinesh D, Suresh U, Nicoletti M, Saleh Alsalhi M, Devanesan S, Benelli G (2017) One pot synthesis of silver nanocrystals using the seaweed Gracillaria edulis: biophysical characterization and potential against the filariasis vector Culex quinquefasciatus and the midge Chironomus circumdatus. J Appl Phycol 29:649–659CrossRefGoogle Scholar
  60. Madhiyazhagan P, Murugan K, Naresh Kumar A, Nataraj T, Dinesh D, Panneerselvam C, Subramaniam J, Mahesh Kumar P, Suresh U, Roni M, Nicoletti M, Alarfaj AA, Higuchi A, Munusamy MA, Benelli G (2015) Sargassum muticum-synthesized silver nanoparticles: an effective control tool against mosquito vectors and bacterial pathogens. Parasitol Res 14:4305–4317CrossRefGoogle Scholar
  61. Madhupratap M (1999) Free-living copepods of the Arabian Sea: distribution and research perspectives. Indian J Marine Sci 28:146–149Google Scholar
  62. Magudapathy P, Gangopadhyay P, Panigrahi BK, Nair KGM, Dhara S (2001) Electrical transport studies of Ag nanoclusters embedded in glass matrix. Physica 299:142–146CrossRefGoogle Scholar
  63. Mahesh Kumar P, Murugan K, Kovendan K, Panneerselvam C, Prasanna Kumar K, Amerasan D, Subramaniam J, Kalimuthu K, Nataraj T (2012) Mosquitocidal activity of Solanum xanthocarpum fruit extract and copepod Mesocyclops thermocyclopoides for the control of dengue vector Aedes aegypti. Parasitol Res 111:609–618CrossRefGoogle Scholar
  64. Mahyoub JA, Aziz AT, Panneerselvam C, Murugan K, Roni M, Trivedi S, Nicoletti M, Hawas UW, Shaher FM, Bamakhrama MA, Canale A, Benelli G (2017) Seagrasses as sources of mosquito nanolarvicides? Toxicity and uptake of Halodule uninervis-biofabricated silver nanoparticles in dengue and Zika virus vector Aedes aegypti. J Clust Sci 28:565–580CrossRefGoogle Scholar
  65. Marten GG (1990a) Evaluation of cyclopoid copepods for Aedes albopictus control in tires. J Am Mosq Control Assoc 6:681–688Google Scholar
  66. Marten GG (1990b) Elimination of Aedes albopictus from tire piles by introducing Macrocyclops albidus (Copepoda: Cyclopidae). J Am Mosq Control 6:689–693Google Scholar
  67. Marten GG, Bordes ES, Nguyen M (1994a) Use of cyclopoid copepods for mosquito control. Hydrobiologia 292:491–496CrossRefGoogle Scholar
  68. Marten GG, Borjas Cush G, Fernández RJW (1994b) Control of larval Aedes aegypti in peridomestic breeding containers. J Med Entomol 31:36–44CrossRefGoogle Scholar
  69. Mehlhorn H (2008) Encyclopedia of parasitology, 3rd edn. Springer, HeidelbergCrossRefGoogle Scholar
  70. Mehlhorn H, Al-Rasheid KA, Al-Quraishy S, Abdel-Ghaffar F (2012) Research and increase of expertise in arachno-entomology are urgently needed. Parasitol Res 110:259–265CrossRefGoogle Scholar
  71. Micevska T, Warne MSJ, Pablo F, Patra R (2006) Variation in and causes of toxicity of cigarette butts to a cladoceran and microtox. Arch Environ Contam Toxicol 50(2):205–212CrossRefGoogle Scholar
  72. Mittal PK, Adak T, Subbarao SK (2005) Inheritance of resistance to Bacillus sphaericus toxins in a laboratory selected strain of A. stephensi (Diptera: Culicidae) and its response to Bacillus thuringiensis var. israelensis. Curr Sci 89:442–443Google Scholar
  73. Moerman JW, Potts GE (2011) Analysis of metals leached from smoked cigarette litter. Tobacco Control 20:30–35CrossRefGoogle Scholar
  74. Mondal N, Hajra A, Chakraborty D, Medda S, Dey U, Datta J (2015) Cigarette butt waste and its effective utilization towards larvicidal activity of mosquito. IJSR Evns Sci 3:0009–0015Google Scholar
  75. Moriwaki H, Kitajima S, Katahira K (2009) Waste on the roadside, “poi-sute” waste: its distribution and elution potential of pollutants into environment. Waste Manag 29:1192–1197CrossRefGoogle Scholar
  76. Munoz I, Gomez MJ, Molina-Diaz A, Huijbregts MAJ, Fernandez-Alba AR, Garcia-Calvo E (2008) Ranking potential impacts of priority and emerging pollutants in urban wastewater through life cycle impact assessment. Chemosphere 74:37–44CrossRefGoogle Scholar
  77. Murugan K, Hwang JS, Kovendan K, Prasanna Kumar K, Vasugi C, Naresh Kumar A (2011) Use of plant products and copepods for control of the dengue vector, Aedes aegypti. Hydrobiologia 666:331–338CrossRefGoogle Scholar
  78. Murugan K, Benelli G, Suganya A, Dinesh D, Panneerselvam C, Nicoletti M, Hwang JS, Mahesh Kumar P, Subramaniam J, Suresh U (2015c) Toxicity of seaweed-synthesized silver nanoparticles against the filariasis vector Culex quinquefasciatus and its impact on predation efficiency of the cyclopoid crustacean Mesocyclops longisetus. Parasitol Res 114:2243–2253CrossRefGoogle Scholar
  79. Murugan K, Benelli G, Panneerselvam C, Subramaniam J, Jeyalalitha T, Dinesh D, Nicoletti M, Hwang JS, Suresh U, Madhiyazhagan P (2015b) Cymbopogon citratus synthesized gold nanoparticles boost the predation efficiency of copepod Mesocyclops aspericornis against malaria and dengue mosquitoes. Exp Parasitol 153:129–138CrossRefGoogle Scholar
  80. Murugan K, Aarthi N, Kovendan K, Panneerselvam C, Chandramohan B, Mahesh Kumar P, Amerasan D, Paulpandi M, Chandirasekar R, Dinesh D, Suresh U, Subramaniam J, Higuchi A, Alarfaj AA, Nicoletti M, Mehlhorn H, Benelli G (2015a) Mosquitocidal and antiplasmodial activity of Senna occidentalis (Cassiae) and Ocimum basilicum (Lamiaceae) from Maruthamalai hills against Anopheles stephensi and Plasmodium falciparum. Parasitol Res 114:3657–3664CrossRefGoogle Scholar
  81. Murugan K, Samidoss CM, Panneerselvam C, Higuchi A, Roni M, Suresh U, Chandramohan B, Subramaniam J, Madhiyazhagan P, Dinesh D, Rajaganesh R, Alarfaj AA, Nicoletti M, Kumar S, Wei H, Canale A, Mehlhorn H, Benelli G (2015d) Seaweed-synthesized silver nanoparticles: an ecofriendly tool in the fight against Plasmodium falciparum and its vector Anopheles stephensi? Parasitol Res 114:4087–4097CrossRefGoogle Scholar
  82. Murugan K, Aruna P, Panneerselvam C, Madhiyazhagan P, Paulpandi M, Subramaniam J, Rajaganesh R, Wei H, Aleh Alsalhi SM, Devanesan S, Nicoletti M, Syuhei B, Canale A, Benelli G (2016b) Fighting arboviral diseases: low toxicity on mammalian cells, dengue growth inhibition (in vitro) and mosquitocidal activity of Centroceras clavulatum-synthesized silver nanoparticles. Parasitol Res 115:651–662CrossRefGoogle Scholar
  83. Murugan K, Anitha J, Dinesh D, Suresh U, Rajaganesh R, Chandramohan B, Subramaniam J, Paulpandi M, Vadivalagan C, Wang L, Hwang JS, Wei H, Saleh Alsalhi M, Devanesan S, Kumar S, Pugazhendy K, Higuchi A, Nicoletti M, Benelli G (2016a) Synthesis of nanoparticles using chitosan from crab shells: implications for control of malaria mosquito vectors and impact on non-target organisms in the aquatic environment. Ecotoxicol Environ Saf 132:318–328CrossRefGoogle Scholar
  84. Murugan K, Nataraj D, Anitha J, Dinesh D, Jayashanthini S, Christina Mary S, Paulpandi M, Panneerselvam C, Subramaniam J, Aziz AT, Nicoletti M, Kumar S, Higuchi A, Benelli G (2017b) Nanofabrication of graphene quantum dots with high toxicity against malaria mosquitoes, Plasmodium falciparum and MCF-7 cancer cells: impact on predation of non-target tadpoles, odonate nymphs and mosquito fishes. J Clust Sci 28:393–411CrossRefGoogle Scholar
  85. Murugan K, Anitha J, Suresh U, Rajaganesh R, Panneerselvam C, Aziz AT, Tseng LC, Kalimuthu K, Alsalhi MS, Devanesan S, Nicoletti M, Sarkar SK, Benelli G, Hwang JS (2017a) Chitosan-fabricated Ag nanoparticles and larvivorous fishes: a novel route to control the coastal malaria vector Anopheles sundaicus? Hydrobiologia 797:335–350CrossRefGoogle Scholar
  86. Nam VS, Yen NT, Kay BH, Marten GG, Reid JW (1998) Eradication of Aedes aegypti from a village in Vietnam using copepod and community participation. Am J Trop Med Hyg 59:657–660CrossRefGoogle Scholar
  87. Naqqash MN, Gökçe A, Bakhsh A, Salim M, (2016) Insecticide resistance and its molecular basis in urban insect pests. Parasitol Res 115(4):1363-1373Google Scholar
  88. Nethengwe MF, Opoku AR, Dludla PV, Madida KT, Shonhai A, Smith P, Singh M (2012) Larvicidal, antipyretic and antiplasmodial activity of some Zulu medicinal plants. J Med Plant Res 6:1255–1262CrossRefGoogle Scholar
  89. Oberdorster E, Zhu S, Michelle Blickley T, McClellan-Green P, Haasch ML (2006) Ecotoxicology of carbon-based engineered nanoparticles: effects of fullerene (C60) on aquatic organisms. Carbon 44:1112–1120CrossRefGoogle Scholar
  90. Ogbalu OK, Bobmanuel RB, Membere O (2014) Larvicidal effect of aqueous leaf extract of tobacco (Nicotiana tabacum) on the third instar larvae of Musca domestica L. IOSR J Agric Veter Sci 7:35–40Google Scholar
  91. Panneerselvam C, Murugan K, Roni M, Aziz AT, Suresh U, Rajaganesh R, Madhiyazhagan P, Subramaniam J, Dinesh D, Nicoletti M, Higuchi A, Alarfaj AA, Munusamy MA, Kumar S, Desneux N, Benelli G (2016) Fern-synthesized nanoparticles in the fight against malaria: LC/MS analysis of Pteridium aquilinum leaf extract and biosynthesis of silver nanoparticles with high mosquitocidal and antiplasmodial activity. Parasitol Res 115:997–1013CrossRefGoogle Scholar
  92. Park J, Kim S, Yoo J, Lee JS, Park JW, Jung J (2014) Effect of salinity on acute copper and zinc toxicity to Tigriopus japonicus: the difference between metal ions and nanoparticles. Mar Pollut Bull 85:526–531CrossRefGoogle Scholar
  93. Patil CD, Borase HP, Patil SV, Salunkhe RB, Salunke BK (2012) Larvicidal activity of silver nanoparticles synthesized using Pergularia daemia plant latex against Aedes aegypti and Anopheles stephensi and nontarget fish Poecillia reticulata. Parasitol Res 111:555–562CrossRefGoogle Scholar
  94. Prasad KS, Pathak D, Patel A, Dalwadi P, Prasad R, Patel P, Selvaraj K (2011) Biogenic synthesis of silver nanoparticles using Nicotiana tobaccum leaf extract and study of their antibacterial effect. Afric J Biotechnol 10:8122–8130CrossRefGoogle Scholar
  95. Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83CrossRefGoogle Scholar
  96. Rai M, Ingle AP, Paralikar P, Gupta I, Medici S, Santos CA (2017) Recent advances in use of silver nanoparticles as antimalarial agents. Int J Pharm 526:254–270Google Scholar
  97. Rajaganesh R, Murugan K, Panneerselvam C, Jayashanthini S, Aziz AT, Roni M, Suresh U, Trivedi S, Rehman H, Higuchi A, Nicoletti M, Benelli G (2016) Fern-synthesized silver nanocrystals: towards a new class of mosquito oviposition deterrents? Res Vet Sci 109:40–51CrossRefGoogle Scholar
  98. Rajeshkumar S, Malarkodi C, Paulkumar K, Vanaja M, Gnanajobitha G, Annadurai G (2014) Algae mediated green fabrication of silver nanoparticles and examination of its antifungal activity against clinical pathogens. Int J Met 2014:692643Google Scholar
  99. Reinskje T, Thomas S, Ewa Florek JVB, Piet W, Antoon O (2011) Hazardous compounds in tobacco smoke. Int J Environ Res Public Health 8:613–628CrossRefGoogle Scholar
  100. Rishikesh N, Dubitiskij AM, Moreau CM (1988) Malaria vector control. Biol Control 118:1227–1251Google Scholar
  101. Roni M, Murugan K, Panneerselvam C, Subramaniam J, Nicoletti M, Madhiyazhagan P, Dinesh D, Suresh U, Khater HF, Wei H, Canale A, Alarfaj AA, Munusamy MA, Higuchi A, Benelli G (2015) Characterization and biotoxicity of Hypnea musciformis-synthesized silver nanoparticles as potential eco-friendly control tool against Aedes aegypti and Plutella xylostella. Ecotoxicol Environ Saf 121:31–38CrossRefGoogle Scholar
  102. Rueda LM (2008) Global diversity of mosquitoes (Insecta: Diptera: Culicidae) in freshwater. Hydrobiologia 595:477–487CrossRefGoogle Scholar
  103. Saxena A, Tripathi RM, Singh RP (2010) Biological synthesis of silver nanoparticles by using onion (Allium cepa) extract and their antibacterial activity. Dig J Nanomater Biostruct 5:427–432Google Scholar
  104. Schmid G (1995) Colloids and clusters. VHC, New YorkGoogle Scholar
  105. Singh CR, Kathiresan K (2015) Effect of cigarette smoking on human health and promising remedy by mangroves. Asian Pac J Trop Biomed 5(2):162–167CrossRefGoogle Scholar
  106. Singh KP, Daboriya V, Kumar S, Singh S (2010) Antibacterial activity and phytochemical investigations on Nicotiana plumbaginifolia viv. (wild tobacco). Plant Biol 55(2):135–142Google Scholar
  107. Slaughter E, Gersberg RM, Watanabe K, Rudolph J, Stransky C, Novotny TE (2011) Toxicity of cigarette butts and their chemical components to marine and freshwater fish. Tob Control 20:25–29CrossRefGoogle Scholar
  108. Smilkstein M, Sriwilaijaroen N, Kelly JX, Wilairat P, Riscoe M (2004) Simple and inexpensive fluorescence-based technique for high-throughput antimalarial drug screening. Antimicrob Agents Chemother 48(5):1803–1806CrossRefGoogle Scholar
  109. Sohail A, Hamid FS, Waheed A, Ahmed N, Aslam N, Zaman Q, Ahmed F, Islam S (2012) Efficacy of different botanical materials against aphid Toxoptera aurantii on tea (Camellia sinensis L.) cuttings under high shade nursery. J Mater Environ Sci 3:1065–1070Google Scholar
  110. Song HY, Ko KK, Oh IH, Lee BT (2006) Fabrication of silver nano particles and their anti-microbial mechanisms. Eur Cells Mater 11:58Google Scholar
  111. Spielman A, Kitron U, Pollack RJ (1993) Time limitation and the role of research in the worldwide attempt to eradicate malaria. J Med Entomol 30:6–19CrossRefGoogle Scholar
  112. Su T, Mulla MS (1998) Ovicidal activity of neem products (Azadirachtin) against Culex tarsalis and Culex quinquefasciatus (Diptera: Culicidae). J Am Mosq Control Assoc 14:204–209Google Scholar
  113. Subramaniam J, Murugan K, Panneerselvam C, Kovendan K, Madhiyazhagan P, Kumar PM, Dinesh D, Chandramohan B, Suresh U, Nicoletti M, Higuchi A, Hwang JS, Kumar S, Alarfaj AA, Munusamy MA, Messing RH, Benelli G (2015) Eco-friendly control of malaria and arbovirus vectors using the mosquitofish Gambusia affinis and ultra-low dosages of Mimusops elengi-synthesized silver nanoparticles: towards an integrative approach? Environ Sci Poll Res 22:20067–20083CrossRefGoogle Scholar
  114. Subramaniam J, Murugan K, Panneerselvam C, Kovendan K, Madhiyazhagan P, Dinesh D, Mahesh Kumar P, Chandramohan B, Suresh U, Rajaganesh R, Saleh Alsalhi M, Devanesan S, Nicoletti M, Canale A, Benelli G (2016) Multipurpose effectiveness of Couroupita guianensis-synthesized gold nanoparticles: high antiplasmodial potential, field efficacy against malaria vectors and synergy with Aplocheilus lineatus predators. Environ Sci Poll Res 23:7543–7558CrossRefGoogle Scholar
  115. Sujitha V, Murugan K, Dinesh D, Pandiyan A, Aruliah R, Hwang JS, Kalimuthu K, Panneerselvam C, Higuchi A, Aziz AT, Kumar S, Alarfaj AA, Vaseeharan B, Canale A, Benelli G (2017) Green-synthesized CdS nano-pesticides: toxicity on young instars of malaria vectors and impact on enzymatic activities of the non-target mud crab Scylla serrata. Aquat Toxicol 188:100–108CrossRefGoogle Scholar
  116. Suresh U, Murugan K, Benelli G, Nicoletti M, Barnard DR, Panneerselvam C, Mahesh Kumar P, Subramaniam J, Dinesh D, Chandramohan B (2015) Tackling the growing threat of dengue: Phyllanthus niruri-mediated synthesis of silver nanoparticles and their mosquitocidal properties against the dengue vector Aedes aegypti (Diptera: Culicidae). Parasitol Res 114:1551–1562CrossRefGoogle Scholar
  117. Suresh U, Murugan K, Panneerselvam C, Rajaganesh R, Roni R, Aziz AT, Han A-A, Trivedi S, Rehman H, Kumar S, Higuchi A, Canale A, Benelli G (2017) Suaeda maritima-based herbal coils and green nanoparticles as potential biopesticides against the dengue vector Aedes aegypti and the tobacco cutworm Spodoptera litura. Physiol Mol Plant Pathol.  https://doi.org/10.1016/j.pmpp.2017.01.002
  118. Tomizawa M, Casida JE (2005) Neonicotinoid insecticide toxicity: mechanisms of selective action. Ann Rev Toxicol 45:247–268CrossRefGoogle Scholar
  119. Trager W, Jensen JB (1976) Human malaria parasites in continuous culture. Science 193(4254):673–675Google Scholar
  120. Vigneshwaran N, Kathe A, Varadrajan PV, Nachane RP, Balasubramanya RH (2006) Biomimetics of silver nanoparticles by white rot fungi Phaenerochaete chrysosporium. Colloid Surf B 53:55–59CrossRefGoogle Scholar
  121. Voyadjoglou A, Roussis V, Petrakis PV (2007) Biological control of mosquito populations: an applied aspect of pest control by means of natural enemies. In: Elewa AMT (ed) Predation in organisms: a distinct phenomenon. Springer, Berlin, pp 123–149CrossRefGoogle Scholar
  122. Ward M, Benelli G (2017) Avian and simian malaria: do they have a cancer connection? Parasitol Res 116(3):839–845Google Scholar
  123. WHO (2015) Dengue and severe dengue. Fact sheet No 117. World Health Organization, GenevaGoogle Scholar
  124. WHO (2016) Zika virus. Fact sheet No 1. Updated January 2016Google Scholar
  125. Yap HH (1985) Biological control of mosquitoes especially malaria vectors Anopheles species. South Asian J Trop Med Public Health 16:163–172Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Kadarkarai Murugan
    • 1
    • 2
  • Udaiyan Suresh
    • 1
  • Chellasamy Panneerselvam
    • 3
  • Rajapandian Rajaganesh
    • 1
  • Mathath Roni
    • 1
  • Al Thabiani Aziz
    • 3
  • Jiang-Shiou Hwang
    • 4
  • Kuppusamy Sathishkumar
    • 2
  • Aruliah Rajasekar
    • 2
  • Suresh Kumar
    • 5
  • Abdullah A. Alarfaj
    • 6
  • Akon Higuchi
    • 7
  • Giovanni Benelli
    • 8
    • 9
  1. 1.Department of ZoologyBharathiar UniversityCoimbatoreIndia
  2. 2.Department of BiotechnologyThiruvalluvar UniversityVelloreIndia
  3. 3.Department of Biology, Faculty of ScienceUniversity of TabukTabukSaudi Arabia
  4. 4.Institute of Marine BiologyNational Taiwan Ocean UniversityKeelungTaiwan
  5. 5.Department of Medical Microbiology and ParasitologyUniversiti Putra MalaysiaSerdangMalaysia
  6. 6.Department of Botany and Microbiology, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
  7. 7.Department of Chemical and Materials EngineeringNational Central UniversityTaoyuanTaiwan
  8. 8.Department of Agriculture, Food and EnvironmentUniversity of PisaPisaItaly
  9. 9.The BioRobotics Institute, Scuola Superiore Sant’AnnaPontederaItaly

Personalised recommendations