Advertisement

Environmental Science and Pollution Research

, Volume 24, Issue 32, pp 24965–24979 | Cite as

A comparative study of inorganic elements in the blood of male and female Caspian pond turtles (Mauremys caspica) from the southern basin of the Caspian Sea

  • Milad AdelEmail author
  • Adriana A. Cortés-Gómez
  • Maryam Dadar
  • Hossein Riyahi
  • Marc Girondot
Research Article

Abstract

Due to their bioaccumulation and biomagnification pathways, inorganic elements can accumulate in high-level aquatic organisms in the food web. Then, this species can be used to monitor the quality of the environment. Blood concentration of nine inorganic elements, including possible toxic metals (An, Cu, Mn, Se, As, Ni, Cd, Pb, and Hg), in 20 males and 20 females from eight different locations with high industry and agriculture activities in Iran were evaluated in this work. Additionally, size, sex, condition index, and locations were also included and analyzed. Among the essential elements, Zn and Se presented very high concentrations (56.14 ± 2.66 and 8.44 ± 0.77 μg/g ww, respectively) in all locations. Regarding possible toxic elements, Pb and Cd presented concerning concentrations as well (0.52 and 0.58 μg/g ww); this is especially true for Pb, an element found in very high concentrations in tissues of turtles from the same area in a previous study. The sex and the size of the individuals also had significant differences in concentration of Pb, Cd, As, and Hg.

Keywords

Inorganic elements Caspian pond turtle Blood 

Notes

Acknowledgements

This study was supported by the Iranian Fisheries Science Research Institute. The authors acknowledge the anonymous reviewers who have contributed their time and expertise to improve this manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Adel M, Saravi HN, Dadar M, Niyazi L, Ley-Quinonez CP (2015): Mercury, lead, and cadmium in tissues of the Caspian pond turtle (Mauremys caspica) from the southern basin of Caspian Sea. Environmental Science and Pollution ResearchGoogle Scholar
  2. Aguirre AA, Balazs GH, Zimmerman B, Galey FD (1994) Organic contaminants and trace metals in the tissues of green turtles (Chelonia mydas) afflicted with fibropapillomas in the Hawaiian islands. Mar Pollut Bull 28:109–114CrossRefGoogle Scholar
  3. Aguirre AA, Gardner SC, Marsh JC, Delgado SG, Limpus CJ, Nichols WJ (2006) Hazards associated with the consumption of sea turtle meat and eggs: a review for health care workers and the general public. EcoHealth 3:141–153CrossRefGoogle Scholar
  4. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723CrossRefGoogle Scholar
  5. Albers PH, Sileo L, Mulhern BM (1986a) Effects of environmental contaminants on snapping turtles of a tidal wetland. Arch Environ Contam Toxicol 15:39–49CrossRefGoogle Scholar
  6. Albers PH, Sileo L, Mulhern BM (1986b) Effects of environmental contaminants on snapping turtles of a tidal wetland. Arch Environ Contam Toxicol 15:39–49CrossRefGoogle Scholar
  7. Allender MC, Dreslik MJ, Patel B, Luber EL, Byrd J, Phillips CA, Scott JW (2015) Select metal and metalloid surveillance of free-ranging eastern box turtles from Illinois and Tennessee (Terrapene carolina carolina). Ecotoxicology 24:1269–1278CrossRefGoogle Scholar
  8. Alloway BJ (ed) (1995) Heavy metals in soils. Blackie and Son Ltd, Glasgow and London, 329 ppGoogle Scholar
  9. Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecology 26:32–46Google Scholar
  10. Andreani G, Santoro M, Cottignoli S, Fabbri M, Carpene E, Isani G (2008) Metal distribution and metallothionein in loggerhead (Caretta caretta) and green (Chelonia mydas) sea turtles. Sci Total Environ 390:287–294CrossRefGoogle Scholar
  11. Atkinson AC (1984): Simulation in research on linear models. In: Rasch D, Tiku ML (Editors), Robustness of statistical methods and nonparametric statistics Springer-Verlag, London, pp. 9–12Google Scholar
  12. ATSDR (2003) Toxicological profile for selenium. U.S. Department of Health and Human Services. Agency for Toxic Substances and Disease Registry, Atlanta, GeorgiaGoogle Scholar
  13. ATSDR (2007a) Toxicological profile for lead. U.S. Department of Health and Human Services. Agency for Toxic Substances and Disease Registry, Atlanta, GeorgiaGoogle Scholar
  14. ATSDR (2007b) Toxicological profile for arsenic. U.S. Department of Health and Human Services. Public Health Service. Agency for Toxic Substances and Disease Registry, Atlanta, GeorgiaGoogle Scholar
  15. ATSDR (2012) Toxicological profile for cadmium. U.S. Department of Health and Human Services. Agency for Toxic Substances and Disease Registry, GeorgiaGoogle Scholar
  16. ATSDR (2015): Support document to the 2015 priority list of hazardous substances. In: Sciences AfTSaDRDoTaHH (Hrsg.). ATSDR, Atlanta, GAGoogle Scholar
  17. Bahnasawy M, Aziz khidr A, Dheina N (2009) Seasonal variations of heavy metals concentrations in mullet, Mugil cephalus and Liza ramada (Mugilidae) from lake Manzala, Egypt. J Appl Sci Res 5:845–852Google Scholar
  18. Barbieri E (2009) Concentration of heavy metals in tissues of green turtles (Chelonia mydas) sampled in the Cananéia Estuary, Brazil. Braz J Oceanogr 57:243–248CrossRefGoogle Scholar
  19. Bergeron CM, Husak JF, Unrine JM, Romanek CS, Hopkins WA (2007) Influence feeding ecology on blood mercury concentrations in four species of turtles. Environ Toxicol Chem 26:1733–1741CrossRefGoogle Scholar
  20. Berglund AM, Koivula MJ, Eeva T (2011) Species- and age-related variation in metal exposure and accumulation of two passerine bird species. Environ Pollut 159:2368–2374CrossRefGoogle Scholar
  21. Bishop BE, Savitzky BA, Abdel-Fattah T (2010) Lead bioaccumulation in emydid turtles of an urban lake and its relationship to shell disease. Ecotoxicol Environ Saf 73:565–571CrossRefGoogle Scholar
  22. Burger J, Carruth-Hinchey C, Ondroff J, McMahon ME (1998) Effects of lead on behavior, growth, and survival of hatchling slider turtles. J Toxicol Environ Health Part A 55:495–502CrossRefGoogle Scholar
  23. Burger J, Jeitner C, Schneider L, Vogt R, Gochfeld M (2010) Arsenic, cadmium, chromium, lead, mercury, and selenium levels in blood of four species of turtles from the Amazon in Brazil. J Toxic Environ Health A 73:33–40CrossRefGoogle Scholar
  24. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer-Verlag, New YorkGoogle Scholar
  25. Camacho M, Oros J, Boada LD, Zaccaroni A, Silvi M, Formigaro C, Lopez P, Zumbado M, Luzardo OP (2013) Potential adverse effects of inorganic pollutants on clinical parameters of loggerhead sea turtles (Caretta caretta): results from a nesting colony from Cape Verde, West Africa. Mar Environ Res 92:15–22CrossRefGoogle Scholar
  26. Chang LW (1996) Toxicology of metals. CRC Press, New YorkGoogle Scholar
  27. Clemente Z, Castro V, Jonsson C, Fraceto L (2011) Ecotoxicology of nano-TiO2—an evaluation of its toxicity to organisms of aquatic ecosystems. International Journal of Environmental Research 6:33–50Google Scholar
  28. Cortés-Gómez AA, Fuentes-Mascorro G, Romero D (2014) Metals and metalloids in whole blood and tissues of Olive Ridley turtles (Lepidochelys olivacea) from La Escobilla Beach (Oaxaca, Mexico). Mar Pollut Bull 89:367–375CrossRefGoogle Scholar
  29. da Silva CC, Klein RD, Barcarolli IF, Bianchini A (2016) Metal contamination as a possible etiology of fibropapillomatosis in juvenile female green sea turtles Chelonia mydas from the southern Atlantic Ocean. Aquat Toxicol 170:42–51CrossRefGoogle Scholar
  30. Davenport J, Wrench I, McEnvoy J, Carnacho-Ibar V. (1990) Metal and PCB concentrations in the “Harlech” leatherback. Marine Turtle Newsletter 48:l–6Google Scholar
  31. Day RD, Christopher SJ, Becker PR, Whitaker DW (2005) Monitoring mercury in the loggerhead sea turtle, Caretta caretta. Environmental Science & Technology 39:437–446CrossRefGoogle Scholar
  32. Day RD, Segars AL, Arendt MD, Lee AM, Peden-Adams MM (2007) Relationship of blood mercury levels to health parameters in the loggerhead sea turtle (Caretta caretta). Environ Health Perspect 115:1421–1428Google Scholar
  33. Day RD, Keller JM, Harms CA, Segars AL, Cluse WM, Godfrey MH, Lee AM, Peden-Adams M, Thorvalson K, Dodd M, Norton T (2010) Comparison of mercury burdens in chronically debilitated and healthy loggerhead sea turtles (Caretta caretta). J Wildl Dis 46:111–117CrossRefGoogle Scholar
  34. de Macedo GR, BT T, Barbosa IS, Pires TT, Rostan G, Goldberg DW, Pinto LF, Korn MG, Franke CR (2015) Trace elements distribution in hawksbill turtle (Eretmochelys imbricata) and green turtle (Chelonia mydas) tissues on the northern coast of Bahia, Brazil. Mar Pollut Bull 94:284–289CrossRefGoogle Scholar
  35. Ehsanpour M, Afkhami M, Khoshnood R, Reich KJ (2014) Determination and maternal transfer of heavy metals (Cd, Cu, Zn, Pb and Hg) in the hawksbill sea turtle (Eretmochelys imbricata) from a nesting colony of Qeshm Island, Iran. Bull Environ Contam Toxicol 92:667–673CrossRefGoogle Scholar
  36. Fritz U, Havaš P (2007) Checklist of chelonians of the world. Bonn and Dresden, German Federal Ministry of Environment. Nature Conservation and Nuclear Safety and Museum of Zoology DresdenGoogle Scholar
  37. Frye FL (1991) Hematology as applied to clinical reptile medicine. In: Frye FL (ed) Reptile care: an atlas of diseases and treatments. TFH Publications, Neptune, pp 211–234Google Scholar
  38. García-Fernández AJ, Gómez-Ramírez P, Martínez-López E, Hernández-García A, María-Mojica P, Romero D, Jiménez P, Castillo JJ, Bellido JJ (2009) Heavy metals in tissues from loggerhead turtles (Caretta caretta) from the southwestern Mediterranean (Spain). Ecotoxicol Environ Saf 72:557–563CrossRefGoogle Scholar
  39. Gardner SC, Fitzgerald SL, Vargas BA, Rodriguez LM (2006) Heavy metal accumulation in four species of sea turtles from the Baja California peninsula, Mexico. Biometals 19:91–99CrossRefGoogle Scholar
  40. Ghorbani M (2013) The economic geology of Iran: mineral deposits and natural resources. Springer Geology. Springer Science+Business Media, Dordrecht, 580 ppCrossRefGoogle Scholar
  41. Grillitsch B, Schiesari L (2010) The ecotoxicology of metals in reptiles. 337-448Google Scholar
  42. Guillon J-M, Guéry L, Hulin V, Girondot M (2012) A large phylogeny of turtles (Testudines) using molecular data. Contrib Zool 81:147–158Google Scholar
  43. Guirlet E, Das K, Girondot M (2008) Maternal transfer of trace elements in leatherback turtles (Dermochelys coriacea) of French Guiana. Aquat Toxicol 88(4):267–276CrossRefGoogle Scholar
  44. Guirlet E, Das K, Thome JP, Girondot M (2010) Maternal transfer of chlorinated contaminants in the leatherback turtles, Dermochelys coriacea, nesting in French Guiana. Chemosphere 79:720–726CrossRefGoogle Scholar
  45. Harris HS, Benson SR, Gilardi KV, Poppenga RH, Work TM, Dutton PH, Mazet JAK (2011) Comparative health assessment of Western Pacific leatherback turtles (Dermochelys Coriacea) foraging off the coast of California, 2005–2007. J Wildl Dis 4:321–337CrossRefGoogle Scholar
  46. Henny CJ, Beal KF, R Goggans (2003) Organochlorine pesticides, PCBs, trace elements, and metals in western pond turtle eggs from Oregon. Northwest Science 77:46-53Google Scholar
  47. Honda M, Yasukawa Y, Ota H (2002) Phylogeny of the Eurasian freshwater turtles of the genus Mauremys Gray 1869 (Testudines), with special reference to a close affinity of Mauremys japonica with Chinemys reevesii. J Zool Syst Evol Research 40:195–200CrossRefGoogle Scholar
  48. Hopkins WA, Snodgrass JW, Baionno JA, Roe JH, Staub BP, Jackson BP (2005) Functional relationships among selenium concentrations in the diet, target tissues, and nondestructive tissue samples of two species of snakes. Environ Toxicol Chem 24:344–351CrossRefGoogle Scholar
  49. Ikonomopoulou MP, Olszowy H, Limpus C, Francis R, Whittier J (2011) Trace element concentrations in nesting flatback turtles (Natator depressus) from Curtis Island, Queensland, Australia. Mar Environ Res 71:10–16CrossRefGoogle Scholar
  50. Innis C, Tlusty M, Perkins C, Holladay S, Merigo C, Weber ES (2008) Trace metal and organochlorine pesticide concentrations in cold-stunned juvenile Kemp’s Ridley turtles (Lepidochelys kempii) from Cape Cod, Massachusetts. Chelonian Conservation and Biology 7:230–239CrossRefGoogle Scholar
  51. Javed M (2005) Heavy metal contamination of freshwater fish and bed sediment in the Ravi river stretch and related tributaries. Pakistan J Biol Sci 8:1337–1341CrossRefGoogle Scholar
  52. Kalantzi I, Shimmield TM, Pergantis SA, Papageorgiou N, Black KD, Karakassis I (2013) Heavy metals, trace elements and sediment geochemistry at four Mediterranean fish farms. Sci Total Environ 444:128–137CrossRefGoogle Scholar
  53. Kitana N, Callard IP (2008) Effect of cadmium on gonadal development in freshwater turtle (Trachemys scripta, Chrysemys picta) embryos. J Environ Sci Health A Tox Hazard Subst Environ Eng 43:262–271CrossRefGoogle Scholar
  54. Lam JC, Tanabe S, Chan SK, Lam MH, Martin M, Lam PK (2006) Levels of trace elements in green turtle eggs collected from Hong Kong: evidence of risks due to selenium and nickel. Environ Pollut 144:790–801CrossRefGoogle Scholar
  55. Langston WJ, Spence SK (1995): Biological factors involved in metal concentrations observed in aquatic organisms. In: Tessier A, Turner DR (Editors), Metal speciation and bioavailability in aquatic systems. John Wiley and Sons, Chichester, pp. 407–478Google Scholar
  56. Ley-Quiñónez C, Zavala-Norzagaray AA, Espinosa-Carreón TL, Peckham H, Marquez-Herrera C, Campos-Villegas L, Aguirre AA (2011) Baseline heavy metals and metalloid values in blood of loggerhead turtles (Caretta caretta) from Baja California Sur, Mexico. Mar Pollut Bull 62:1979–1983CrossRefGoogle Scholar
  57. Ley-Quiñónez CP, Zavala-Norzagaray AA, Rendon-Maldonado JG, Espinosa-Carreon TL, Canizales-Roman A, Escobedo-Urias DC, Leal-Acosta ML, Hart CE, Aguirre AA (2013) Selected heavy metals and selenium in the blood of black sea turtle (Chelonia mydas agasiizzi) from Sonora, Mexico. Bull Environ Contam Toxicol 91:645–651CrossRefGoogle Scholar
  58. Lovich JE (1996) Possible demographic and ecologic consequences of sex ratio manipulation in turtles. Chelon Conserv Biol 2:114–117Google Scholar
  59. Maanijou M, Aliani F, Miri M, Lentz DR (2013) Geochemistry and petrology of igneous assemblage in the south of Qorveh area, west Iran. Chemie der Erde - Geochemistry 73:181–196CrossRefGoogle Scholar
  60. Maffucci F, Caurant F, Bustamante P, Bentivegna F (2005) Trace element (Cd, Cu, Hg, Se, Zn) accumulation and tissue distribution in loggerhead turtles (Caretta caretta) from the Western Mediterranean Sea (Southern Italy). Chemosphere 58:535–542CrossRefGoogle Scholar
  61. Malik RN, Ghaffar B, Hashmi MZ (2013) Trace metals in Ganges soft-shell turtle (Aspideretes gangeticus) from two barrage: Baloki and Rasul, Pakistan. Environ Sci Pollut Res 20:8263–8273CrossRefGoogle Scholar
  62. Martínez-López E, Sousa AR, María-Mojíca P, Gómez-Ramírez P, Guilhermino L, García-Fernández AJ (2010) Blood delta-ALAD, lead and cadmium concentrations in spur-thighed tortoises (Testudo graeca) from Southeastern Spain and Northern Africa. Ecotoxicology 19:670–677CrossRefGoogle Scholar
  63. Martínez-López E, Gómez-Ramírez P, Espin S, Aldeguer MP, García-Fernández AJ (2017): Influence of a former mining area in the heavy metals concentrations in blood of free-living Mediterranean pond turtles (Mauremys leprosa). Bull Environ Contam ToxicolGoogle Scholar
  64. Meyers-Schöne L (1989) Comparison of two freshwater turtle species as monitors of environmental contamination. PhD thesis Thesis, University of Tennessee, Knoxville, TNGoogle Scholar
  65. Moazzen M, Oberhänsli R (2008) Whole rock and relict igneous clinopyroxene geochemistry of ophiolite-related amphibolites from NW Iran—implications for protolith nature. Neues Jahrbuch für Mineralogie - Abhandlungen 185:51–62CrossRefGoogle Scholar
  66. Movahedi M, Chitgari E, Yazdi M, Khakzad A (2005) Geochemical exploration in igneous rocks of the Tootyzar area, Aran, central Iran, mineral deposit research: meeting the global challenge. Springer-Verlag, London, pp 1019–1020CrossRefGoogle Scholar
  67. Olowu RA, Ayejuyo OO, Adewuyi GO, Adejoro IA, Denloye AAB, Babatunde AO, Ogundajo AL (2010) Determination of heavy metals in fish tissues, water and sediment from Epe and Badagry lagoons, Lagos, Nigeria. E-Journal of Chemistry 7:215–221CrossRefGoogle Scholar
  68. Paez-Osuna F, Calderon-Campuzano MF, Soto-Jimenez MF, Ruelas-Inzunza JR (2010a) Lead in blood and eggs of the sea turtle, Lepidochelys olivacea, from the Eastern Pacific: concentration, isotopic composition and maternal transfer. Mar Pollut Bull 60(3):433–439Google Scholar
  69. Paez-Osuna F, Calderon-Campuzano MF, Soto-Jimenez MF, Ruelas-Inzunza JR (2010b) Trace metals (Cd, Cu, Ni, and Zn) in blood and eggs of the sea turtle Lepidochelys olivacea from a nesting colony of Oaxaca, Mexico. Arch Environ Contam Toxicol 59(4):632–641Google Scholar
  70. Paez-Osuna F, Calderon-Campuzano MF, Soto-Jiménez MF, Ruelas-Inzunza J (2011) Mercury in blood and eggs of the sea turtle Lepidochelys olivacea from a nesting colony in Oaxaca, Mexico. Mar Pollut Bull 62:1320–1323CrossRefGoogle Scholar
  71. Pérez-López M, Mendoza MH, López-Beceiro A, Soler F (2008) Heavy metal (Cd, Pb, Zn) and metalloid (As) content in raptor species from Galicia (NW Spain). Ecotoxicol Environ Saf 70:154–162CrossRefGoogle Scholar
  72. Perrault J, Wyneken J, Thompson LJ, Johnson C, Miller DL (2011) Why are hatching and emergence success low? Mercury and selenium concentrations in nesting leatherback sea turtles (Dermochelys coriacea) and their young in Florida. Mar Pollut Bull 62:1671–1682CrossRefGoogle Scholar
  73. Perrault JR, Miller DL, Garner J, Wyneken J (2013) Mercury and selenium concentrations in leatherback sea turtles (Dermochelys coriacea): population comparisons, implications for reproductive success, hazard quotients and directions for future research. Sci Total Environ 463-464:61–71CrossRefGoogle Scholar
  74. Rainbow PS (2002) Trace metal concentrations in aquatic invertebrates: why and so what? Environ Pollut 120:497–507CrossRefGoogle Scholar
  75. Schneider L, Belger L, Burger J, Vogt RC, Jeitner C, Peleja JRP (2011) Assessment of non-invasive techniques for monitoring mercury concentrations in species of Amazon turtles. Toxicol Environ Chem 93:238–250CrossRefGoogle Scholar
  76. Stevenson RD, Woods WA Jr (2006) Condition indices for conservation: new uses for evolving tools. Integr Comp Biol 46:1169–1190CrossRefGoogle Scholar
  77. Storelli MM, Ceci E, Marcotrigiano GO (1998) Distribution of heavy metal residues in some tissues of Caretta caretta (Linnaeus) specimen beached along the Adriatic Sea (Italy). Bull Environ Contam Toxicol 60(4):546–552CrossRefGoogle Scholar
  78. Suzuki K, Noda J, Yanagisawa M, Kawazu I, Sera K, Fukui D, Asakawa M, Yokota H (2012) Relationships between carapace sizes and plasma major and trace element status in captive hawksbill sea turtles (Eretmochelys imbricata). J Vet Med Sci 74:1677–1680CrossRefGoogle Scholar
  79. Tok CV (1999) The taxonomy and ecology of Mauremys caspica rivulata Valenciennes, 1833 (Testudinata: Bataguridae) and Testudo graeca ibera Pallas, 1811 (Testudinata: Testudinidae) on Reşadiye (Datça) Peninsula. Turkish Journal of Zoology 23:17–21Google Scholar
  80. Tryfonas AE, Tucker JK, Brunkow PE, Johnson KA, Huseein HS, Lin Z-Q (2006) Metal accumulation in eggs of the red-eared slider (Trachemys scripta elegans) in the Lower Illinois River. Chemosphere 63:39–48CrossRefGoogle Scholar
  81. Tucek J, Nel R, Girondot M, Hughes G (2014) Age−size relationship at reproduction of South African female loggerhead turtles Caretta caretta. Endanger Species Res 23:167–175CrossRefGoogle Scholar
  82. Vamberger MH, Stuckas H, Ayaz D, Gracia E, Aloufi AA, Els J, Mazanaeva LF, Kami HG, Fritz U (2013) Conservation genetics and phylogeography of the poorly known Middle Eastern terrapin Mauremys caspica (Testudines: Geoemydidae). Organisms Diversity & Evolution 13:77–85CrossRefGoogle Scholar
  83. van de Merwe JP, Hodge M, Olszowy HA, Whittier JM, Lee SY (2010) Using blood samples to estimate persistent organic pollutants and metals in green sea turtles (Chelonia mydas). Mar Pollut Bull 60:579–588CrossRefGoogle Scholar
  84. Wang H-C (2005) Trace metal uptake and accumulation pathways in Kemp’s Ridley. A&M University, Texas, 275 ppGoogle Scholar
  85. Warton DI, Wright TW, Wang Y (2012) Distance-based multivariate analyses confound location and dispersion effects. Methods Ecol Evol 3:89–101CrossRefGoogle Scholar
  86. Wilson JH, Wilson EJ, Ruszler PL (2001) Dietary nickel improves male broiler (Gallus domesticus) bone strength. Biol Trace Elem Res 83:239–249CrossRefGoogle Scholar
  87. Witkowski SA, Frazier JG (1982) Heavy metals in sea turtles. Mar Pollut Bull 13:254–255CrossRefGoogle Scholar
  88. Yadollahvand R, Kami HG, Mashroofeh A, Bakhtiari AR (2014) Assessment trace elements concentrations in tissues in Caspian pond turtle (Mauremys caspica) from Golestan Province, Iran. Ecotoxicol Environ Saf 101:191–195CrossRefGoogle Scholar
  89. Yu S, Halbrook RS, Sparling DW, Colombo R (2011) Metal accumulation and evaluation of effects in a freshwater turtle. Ecotoxicology 20(8):1801–1812CrossRefGoogle Scholar
  90. Yu S, Halbrook RS, Sparling DW (2013) Correlation between heavy metals and turtle abundance in ponds near the Paducah Gaseous Diffusion Plant, Kentucky, USA. Arch Environ Contam Toxicol 65:555–566CrossRefGoogle Scholar
  91. Zavala-Norzagaray AA, Ley-Quiñónez CP, Espinosa-Carreon TL, Canizalez-Roman A, Hart CE, Aguirre AA (2014) Trace elements in blood of sea turtles Lepidochelys olivacea in the Gulf of California, Mexico. Bull Environ Contam Toxicol 93:536–541CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Milad Adel
    • 1
    Email author
  • Adriana A. Cortés-Gómez
    • 2
  • Maryam Dadar
    • 3
  • Hossein Riyahi
    • 4
  • Marc Girondot
    • 2
  1. 1.Department of Aquatic Animal Health and DiseasesIranian Fisheries Science Research Institute, Agriculture Research Education and Extension OrganizationTehranIran
  2. 2.Laboratoire Ecologie, Systématique et Evolution, UMR 8079Université Paris Sud, CNRS et AgroParisTechOrsay cedexFrance
  3. 3.Razi Vaccine and Serum Research Institute, Agricultural ResearchKarajIran
  4. 4.DVM Graduated, Faculty of Veterinary MedicineShahrekord UniversityShahrekordIran

Personalised recommendations