Environmental Science and Pollution Research

, Volume 24, Issue 6, pp 5908–5917 | Cite as

Cu(II) adsorption from copper mine water by chitosan films and the matrix effects

  • Tuanny S. Frantz
  • Nauro SilveiraJr.
  • Maurízio S. Quadro
  • Robson Andreazza
  • Amauri A. Barcelos
  • Tito R. S. CadavalJr.
  • Luiz A. A. PintoEmail author
Research Article


Adsorption of copper ions onto chitosan films was studied, and the matrix effect was evaluated using a synthetic solution and a real effluent from closed copper mine. Chitosan films were prepared by casting technique and characterized. The adsorption study was carried out by equilibrium isotherms, thermodynamics, and kinetics. The thermodynamic parameters indicated that the copper adsorption onto chitosan film was favorable, spontaneous, and exothermic, suggesting an increased randomness at the solid/solution interface. The matrix effect was evaluated in kinetic assays, where a synthetic solution and a real system were carried out at different stirring rates. The highest values of adsorption capacity reached in all stirring rates were about 20% lower in the real effluent, and this reduction in the competitiveness was due to the presence of other ions in the matrix of the real effluent. The maximum adsorption capacity of copper ions onto chitosan films for the synthetic solution was of 450 mg g−1, and the removal percentage was in the range from 78 to 96%, and these values for the real effluent were of 360 mg g−1 and removal ranging from 62 to 76%. The mapping done of ions present in the water adsorbed of the mine in the films showed that the same was homogeneously distributed in the films’ surfaces.


Adsorption Chitosan film Copper ions Matrix effect Wastewater 



The authors would like to thank CAPES (Brazilian Agency for Improvement of Graduate Personnel) and CNPq (National Council of Science and Technological Development) for the financial support and CEME-Sul/FURG for SEM images and EDS.


  1. Ali I (2014) Water treatment by adsorption columns: evaluation at ground level. Sep Purif Rev 43:175–205. doi: 10.1080/15422119.2012.748671 CrossRefGoogle Scholar
  2. Ali I, Asim M, Khan TA (2012) Low cost adsorbents for the removal of organic pollutants from wastewater. J Environ Manag 113:170–183. doi: 10.1016/j.jenvman.2012.08.028 CrossRefGoogle Scholar
  3. Ali I, Jain CK (2004) Advances in arsenic speciation techniques. Int J Environ Anal Chem 84:947–964. doi: 10.1080/03067310410001729637 CrossRefGoogle Scholar
  4. ASTM (2001) American Society for Testing and Materials. Standard test methods for tensile properties of thin plastic sheeting (Standard D882–02, 162–170), Philadelphia.Google Scholar
  5. Annadural G, Juang RS, Lee DJ (2002) Adsorption of heavy metals from water using banana and orange peels. Water Sci Technol 47:185–190Google Scholar
  6. Batista ACL, Villanueva ER, Amorim RVS, Tavares MT, Campos-Takaki GM (2011) Chromium(VI) ion adsorption features of chitosan film and its chitosan/zeolite conjugate 13X film. Molecules 16:3569–3579. doi: 10.3390/molecules16053569 CrossRefGoogle Scholar
  7. Cadaval TRS, Dotto GL, Seus ER, Mirlean N, Pinto LAA (2015) Vanadium removal from aqueous solutions by adsorption onto chitosan films. Desalin Water Treat 3994:1–9. doi: 10.1080/19443994.2015.1079741 Google Scholar
  8. Cadaval TRS Jr, Camara AS, Dotto GL, Pinto LAA (2013) Adsorption of Cr(VI) by chitosan with different deacetylation degrees. Desalin Water Treat 51:37–41. doi: 10.1080/19443994.2013.778797 Google Scholar
  9. Crini G, Badot PM (2008) Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature. Prog Polym Sci 33:399–447. doi: 10.1016/j.progpolymsci.2007.11.001 CrossRefGoogle Scholar
  10. Dotto GL, Souza VC, Moura JM, Moura CM, Pinto LAA (2011) Influence of drying techniques on the characteristics of chitosan and the quality of biopolymer films. Dry Technol 29:1784–1791. doi: 10.1080/07373937.2011.602812 CrossRefGoogle Scholar
  11. Dotto GL, Moura JM, Cadaval TRS, Pinto LAA (2013) Application of chitosan films for the removal of food dyes from aqueous solutions by adsorption. Chem Eng J 214:8–16. doi: 10.1016/j.cej.2012.10.027 CrossRefGoogle Scholar
  12. Dotto GL, Pinto LAA (2011) Adsorption of food dyes acid blue 9 and food yellow 3 onto chitosan: stirring rate effect in kinetics and mechanism. J Hazard Mater 187:164–170. doi: 10.1016/j.jhazmat.2011.01.016 CrossRefGoogle Scholar
  13. Fajardo AR, Lopes LC, Rubira AF, Muniz EC (2012) Development and application of chitosan/poly(vinyl alcohol) films for removal and recovery of Pb(II). Chem Eng J 183:253–260. doi: 10.1016/j.cej.2011.12.071 CrossRefGoogle Scholar
  14. Feng D, Aldrich C, Tan H (2000) Treatment of acid mine water by use of heavy metal precipitation and ion exchange. Miner Eng 13:623–642. doi: 10.1016/S0892-6875(00)00045-5 CrossRefGoogle Scholar
  15. Futalan CM, Kan CC, Dalida ML et al (2011) Comparative and competitive adsorption of copper, lead, and nickel using chitosan immobilized on bentonite. Carbohydr Polym 83:528–536. doi: 10.1016/j.carbpol.2010.08.013 CrossRefGoogle Scholar
  16. Ge P, Li F (2011) Kinetics and thermodynamics of heavy metal Cu(II) adsorption on mesoporous silicates. Polish J Environ Stud 20:339–344Google Scholar
  17. Geets J, Vanbroekhoven K, Borremans B, Vangronsveld J, Diels L (2006) Column experiments to assess the effects of electron donors on the efficiency of in situ precipitation of Zn, Cd, Co and Ni in contaminated groundwater applying the biological sulfate removal technology. Env Sci Pollut Res 13:362–378CrossRefGoogle Scholar
  18. Gerente C, Lee VKC, Cloirec PL, Mckay G (2007) Application of chitosan for the removal of metals from wastewaters by adsorption—mechanisms and models review. Crit Rev Environ Sci Technol 37:41–127. doi: 10.1080/10643380600729089 CrossRefGoogle Scholar
  19. Goldstein J, Newbury DE, Joy DC, Lyman CE, Echlin P, Lifshin E, Sawyer L, Michael JR (2003) Scanning electron microscopy and X-ray microanalysis. Springer, New YorkCrossRefGoogle Scholar
  20. Guibal E (2004) Interactions of metal ions with chitosan-based sorbents: a review. Sep Purif Technol 38:43–74. doi: 10.1016/j.seppur.2003.10.004 CrossRefGoogle Scholar
  21. Hasan S, Ghosh TK, Viswanath DS, Boddu VM (2008) Dispersion of chitosan on perlite for enhancement of copper(II) adsorption capacity. J Hazard Mater 152:826–837. doi: 10.1016/j.jhazmat.2007.07.078 CrossRefGoogle Scholar
  22. Ho YS (2006) Review of second-order models for adsorption systems. J Hazard Mater 136:681–689. doi: 10.1016/j.jhazmat.2005.12.043 CrossRefGoogle Scholar
  23. Hunsom M, Pruksathorn K, Damronglerd S, Vergnes H, Duverneuil P (2005) Electrochemical treatment of heavy metals (Cu2+, Cr 6+, Ni2+) from industrial effluent and modeling of copper reduction. Water Res 39:610–616. doi: 10.1016/j.watres.2004.10.011 CrossRefGoogle Scholar
  24. Jeon C, Höll WH (2003) Chemical modification of chitosan and equilibrium study for mercury ion removal. Water Res 37:4770–4780. doi: 10.1016/S0043-1354(03)00431-7 CrossRefGoogle Scholar
  25. Kannamba B, Reddy KL, AppaRao BV (2010) Removal of Cu(II) from aqueous solutions using chemically modified chitosan. J Hazard Mater 175:939–948. doi: 10.1016/j.jhazmat.2009.10.098 CrossRefGoogle Scholar
  26. Kiran B, Thanasekaran K (2011) Copper biosorption on Lyngbya putealis: application of response surface methodology (RSM). Int Biodeterior Biodegrad 65:840–845. doi: 10.1016/j.ibiod.2011.06.004 CrossRefGoogle Scholar
  27. Liu Y (2009) Is the free energy change of adsorption correctly calculated? J Chem Eng Data 54:1981–1985. doi: 10.1021/je800661q CrossRefGoogle Scholar
  28. Matlock MM, Howerton BS, Atwood DA (2002) Chemical precipitation of heavy metals from acid mine drainage. Water Res 36:4757–4764. doi: 10.1016/S0043-1354(02)00149-5 CrossRefGoogle Scholar
  29. Moura CM, Moura JM, Soares NM, Pinto LAA (2011) Evaluation of molar weight and deacetylation degree of chitosan during chitin deacetylation reaction: used to produce biofilm. Chem Eng Process Intensif 50:351–355. doi: 10.1016/j.cep.2011.03.003 CrossRefGoogle Scholar
  30. Ruthven DM (1984) Principles of adsorption and adsorption processes. John Wiley & Sons, New YorkGoogle Scholar
  31. Silverstein MR, Webster XF, Kiemle JD (2005) Spectrometric identification of organic compounds, 7th edn. John Wiley & Sons, New YorkGoogle Scholar
  32. Tao Y, Ye L, Pan J, Wang Y, Tang B (2009) Removal of Pb(II) from aqueous solution on chitosan/TiO2 hybrid film. J Hazard Mater 161:718–722. doi: 10.1016/j.jhazmat.2008.04.012 CrossRefGoogle Scholar
  33. Ulmanu M, Fernandez Y (2003) Removal of copper and cadmium ions from diluted aqueous solutions by low cost and waste material adsorbents. Water Air Soil 1:357–373CrossRefGoogle Scholar
  34. Vieira RS, Oliveira MLM, Guibal E, Rodríguez-Castellón E, Beppu MM (2011) Copper, mercury and chromium adsorption on natural and crosslinked chitosan films: an XPS investigation of mechanism. Colloids Surf A Physicochem Eng Asp 374:108–114. doi: 10.1016/j.colsurfa.2010.11.022 CrossRefGoogle Scholar
  35. Wang X, Liu Y, Zheng J (2016) Removal of As(III) and As(V) from water by chitosan and chitosan derivatives: a review. Environ Sci Pollut Res 23:13789–13801. doi: 10.1007/s11356-016-6602-8 CrossRefGoogle Scholar
  36. Wu FC, Tseng RL, Juang RS (2001) Kinetic modeling of liquid-phase adsorption of reactive dyes and metal ions on chitosan. Water Res 35:613–618. doi: 10.1016/S0043-1354(00)00307-9 CrossRefGoogle Scholar
  37. Yamani JS, Lounsbury AW, Zimmerman JB (2016) Towards a selective adsorbent for arsenate and selenite in the presence of phosphate: assessment of adsorption efficiency, mechanism, and binary separation factors of the chitosan-copper complex. Water Res 88:889–896. doi: 10.1016/j.watres.2015.11.017 CrossRefGoogle Scholar
  38. Yavuz O, Altunkaynak Y, Guzel FG (2003) Removal of copper, nickel, cobalt and manganese from aqueous solution by kaolinite. Water Res 37:948–952. doi: 10.1016/S0043-1354(02)00409-8 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Tuanny S. Frantz
    • 1
  • Nauro SilveiraJr.
    • 1
  • Maurízio S. Quadro
    • 2
  • Robson Andreazza
    • 2
  • Amauri A. Barcelos
    • 2
  • Tito R. S. CadavalJr.
    • 1
  • Luiz A. A. Pinto
    • 1
    Email author
  1. 1.School of Chemistry and FoodFederal University of Rio Grande (FURG)Rio GrandeBrazil
  2. 2.Engineering DepartmentFederal University of Pelotas (UFPel)PelotasBrazil

Personalised recommendations