Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Alleviation of lead-induced oxidative stress and immune damage by selenium in chicken bursa of Fabricius

  • 513 Accesses

  • 33 Citations


We investigated lead (Pb)-induced oxidative stress and immune damage in the chicken bursa of Fabricius (BF) and the ameliorative effect of selenium (Se). Seven-day-old male chickens were randomly divided into four groups and were provided standard diet and drinking water, Na2SeO3 added to the standard diet and drinking water, standard diet and (CH3COO)2Pb added to drinking water, and Na2SeO3 added to the standard diet and (CH3COO)2Pb added to drinking water for 30, 60, and 90 days. The presence of Pb inhibited total antioxidant capacity (T-AOC), glutathione peroxidase (GPx), glutathione S-transferase (GST), superoxide dismutase (SOD), and catalase (CAT) activities; decreased glutathione (GSH) content; increased malondialdehyde (MDA) and hydrogen peroxide (H2O2) contents; inhibited interleukin (IL)-2 and interferon-γ (IFN-γ) messenger RNA (mRNA) expression; and increased IL-4, IL-6, IL-10, IL-12β, and IL-17 mRNA expression. The presence of Se relieved all of the above Pb-induced changes. There were close correlations among GSH, CAT, T-AOC, SOD, GPx, MDA, and H2O2 and among IL-2, IL-4, IL-6, IL-12β, IL-17, and IFN-γ. Our data showed that Pb caused oxidative stress and immune damage in the chicken BF. Se alleviated Pb-induced oxidative stress and immune damage in the chicken BF.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. Abdel-Tawwab M, Mousa MAA, Abbass FE (2007) Growth performance and physiological response of African catfish, Clarias gariepinus (B.) fed organic selenium prior to the exposure to environmental copper toxicity. Aquaculture. doi:10.1016/j.aquaculture.2007.09.004

  2. Bishayi B, Sengupta M (2006) Synergism in immunotoxicological effects due to repeated combined administration of arsenic and lead in mice. Int Immunopharmacol. doi:10.1016/j.intimp.2005.09.011

  3. Bunn TL, Parsons PJ, Kao E, Dietert RR (2001) Exposure to lead during critical windows of embryonic development: differential immunotoxic outcome based on stage of exposure and gender. Toxicol Sci. doi:10.1093/toxsci/64.1.57

  4. Broome CS, McArdle F, Kyle JA, Andrews F, Lowe NM, Hart CA, Arthur JR, Jackson MJ (2004) An increase in selenium intake improves immune function and poliovirus handling in adults with marginal selenium status. Am J Clin Nutr 80(1):154–162

  5. Canfield RL, Henderson CR Jr, Cory-Slechta DA, Cox C, Jusko TA, Lanphear BP (2003) Intellectual impairment in children with blood lead concentrations below 10 microg per deciliter. New Engl J Med. doi:10.1056/NEJMoa022848348

  6. Chinde S, Kumari M, Devi KR, Murty US, Rahman MF, Kumari SI, Mahboob M, Grover P (2014) Assessment of genotoxic effects of lead in occupationally exposed workers. Environ Sci Pollut Res. doi:10.1007/s11356-014-3128-9

  7. Dai W, Liu S, Fu L, Du H, Xu Z (2012) Lead (Pb) accumulation, oxidative stress and DNA damage induced by dietary Pb in tilapia (Oreochromis niloticus). Aquac Res. doi:10.1111/j.1365-2109.2011.02817.x

  8. Demenesku J, Mirkov I, Ninkov M, Popov Aleksandrov A, Zolotarevski L, Kataranovski D, Kataranovski M (2014) Acute cadmium administration to rats exerts both immunosuppressive and proinflammatory effects in spleen. Toxicology. doi:10.1016/j.tox.2014.10.012

  9. Dietert RR, Lee JE, Hussain I, Piepenbrink M (2004) Developmental immunotoxicology of lead. Toxicol Appl Pharmacol. doi:10.1016/j.taap.2003.08.020

  10. Dietert RR, Piepenbrink MS (2006) Lead and immune function. Crit Rev Toxicol. doi:10.1080/10408440500534297

  11. El-Boshy ME, Risha EF, Abdelhamid FM, Mubarak MS, Hadda TB (2015) Protective effects of selenium against cadmium induced hematological disturbances, immunosuppressive, oxidative stress and hepatorenal damage in rats. J Trace Elem Med Biol. doi:10.1016/j.jtemb.2014.05.009

  12. Fang L, Zhao F, Shen X, Ouyang W, Liu X, Xu Y, Yu T, Jin B, Chen J, Luo W (2012) Pb exposure attenuates hypersensitivity in vivo by increasing regulatory T cells. Toxicol Appl Pharmacol. doi:10.1016/j.taap.2012.10.001

  13. Fisher IJ, Pain DJ, Thomas VG (2006) A review of lead poisoning from ammunition sources in terrestrial birds. Biol Conserv. doi:10.1016/j.biocon.2006.02.018

  14. Gao H, Liu CP, Song SQ, Fu J (2016) Effects of dietary selenium against lead toxicity on mRNA levels of 25 selenoprotein genes in the cartilage tissue of broiler chicken. Biol Trace Elem Res. doi:10.1007/s12011-015-0579-x

  15. Hashish EA, Elgaml SA, El-Murr A, Khalil R (2015) Nephroprotective and antioxidant significance of selenium and alpha-tocopherol on lead acetate-induced toxicity of Nile tilapia (Oreochromis niloticus). Fish Physiol Biochem. doi:10.1007/s10695-015-0035-z

  16. Hemdan NY, Emmrich F, Adham K, Wichmann G, Lehmann I, El-Massry A, Ghoneim H, Lehmann J, Sack U (2005) Dose-dependent modulation of the in vitro cytokine production of human immune competent cells by lead salts. Toxicol Sci. doi:10.1093/toxsci/kfi177

  17. Jin X, Liu CP, Teng XH, Fu J (2016) Effects of dietary selenium against lead toxicity are related to the ion profile in chicken muscle. Biol Trace Elem Res. doi:10.1007/s12011-015-0585-z

  18. Kataranovski M, Jankovic S, Kataranovski D, Stosic J, Bogojevic D (2009) Gender differences in acute cadmium-induced systemic inflammation in rats. Biomed Environ Sci. doi:10.1016/S0895-3988(09)60014-3

  19. Kim J, Oh JM (2015) Tissue distribution of heavy metals in heron and egret chicks from Pyeongtaek, Korea. Arch Environ Contam Toxicol. doi:10.1007/s00244-014-0110-y

  20. Klaassen C (2013) Casarett & Doull's toxicology: the basic science of poisons. McGraw-Hill, New York

  21. Kong P, Luo W, Lu Y, Wang T, Jiao W, Hu W, Naile JE, Khim JS, Giesy JP (2015) Distribution and bioaccumulation of lead in the coastal watersheds of the northern Bohai and yellow seas in China. Environ Geochem Health. doi:10.1007/s10653-014-9664-x

  22. Lakshmi BV, Sudhakar M, Aparna M (2013) Protective potential of black grapes against lead induced oxidative stress in rats. Environ Toxicol Pharmacol. doi:10.1016/j.etap.2013.01.008

  23. Li JL, Gao R, Li S, Wang JT, Tang ZX, Xu SW (2010) Testicular toxicity induced by dietary cadmium in cocks and ameliorative effect by selenium. Biometals. doi:10.1007/s10534-010-9334-0

  24. Li JL, Jiang CY, Li S, Xu SW (2013) Cadmium induced hepatotoxicity in chickens (Gallus domesticus) and ameliorative effect by selenium. Ecotox Environ Safe. doi:10.1016/j.ecoenv.2013.07.007

  25. Liu CM, Ma JQ, Sun YZ (2011) Protective role of puerarin on lead-induced alterations of the hepatic glutathione antioxidant system and hyperlipidemia in rats. Food Chem Toxicol. doi:10.1016/j.fct.2011.09.007

  26. Liu CM, Sun YZ, Sun JM, Ma JQ, Cheng C (2012a) Protective role of quercetin against lead-induced inflammatory response in rat kidney through the ROS-mediated MAPKs and NF-kappaB pathway. Biochim Biophys Acta. doi:10.1016/j.bbagen.2012.06.011

  27. Liu XF, Li ZP, Tie F, Liu N, Zhang ZW, Xu SW (2013) Effects of manganese-toxicity on immune-related organs of cocks. Chemosphere. doi:10.1016/j.chemosphere.2012.10.072

  28. Liu X, Li Z, Han C, Zhang Z, Xu S (2012b) Effects of dietary manganese on Cu, Fe, Zn, Ca, Se, IL-1β, and IL-2 changes of immune organs in cocks. Biol Trace Elem Res. doi:10.1007/s12011-012-9377-x

  29. Lu X, Zhu Y, Bai R, Li S, Teng X (2015) The effect of manganese-induced toxicity on the cytokine mRNA expression of chicken spleen lymphocytes in vitro. Res Vet Sci. doi:10.1016/j.rvsc.2015.05.009

  30. Mabrouk A, Bel HSI, Chaieb W, Ben CH (2016) Protective effect of thymoquinone against lead-induced hepatic toxicity in rats. Environ Sci Pollut Res. doi:10.1007/s11356-016-6419-5

  31. Mao JS, Dong J, Graedel TE (2008) The multilevel cycle of anthropogenic lead: II. Results and discussion. Resour Conserv Recy. doi:10.1016/j.resconrec.2008.04.005

  32. Mohammadi M, Ghaznavi R, Keyhanmanesh R, Sadeghipour HR, Naderi R, Mohammadi H (2014) Caloric restriction prevents lead-induced oxidative stress and inflammation in rat liver. Thescientificwordjo. doi:10.1155/2014/821524

  33. Ni Z, Hou S, Barton CH, Vaziri ND (2004) Lead exposure raises superoxide and hydrogen peroxide in human endothelial and vascular smooth muscle cells. Kidney Int. doi:10.1111/j.1523-1755.2004.66032.x

  34. Omobowale TO, Oyagbemi AA, Akinrinde AS, Saba AB, Daramola OT, Ogunpolu BS, Olopade JO (2014) Failure of recovery from lead induced hepatoxicity and disruption of erythrocyte antioxidant defence system in Wistar rats. Environ Toxicol Pharmacol. doi:10.1016/j.etap.2014.03.002

  35. Ozkan-Yilmaz F, Ozluer-Hunt A, Gunduz SG, Berkoz M, Yalin S (2014) Effects of dietary selenium of organic form against lead toxicity on the antioxidant system in Cyprinus carpio. Fish Physiol Biochem. doi:10.1007/s10695-013-9848-9

  36. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. doi:10.1093/nar/29.9.e45

  37. Ribatti D, Crivellato E, Vacca A (2006) The contribution of Bruce Glick to the definition of the role played by the bursa of Fabricius in the development of the B cell lineage. Clin Exp Immunol. doi:10.1111/j.1365-2249.2006.03131.x

  38. Seno K, Ohno J, Ota N, Hirofuji T, Taniguchi K (2013) Lupus-like oral mucosal lesions in mercury-induced autoimmune response in Brown Norway rats. BMC Immunol. doi:10.1186/1471-2172-14-47

  39. Shafik NM, El Batsh MM (2016) Protective effects of combined selenium and Punica granatum treatment on some inflammatory and oxidative stress markers in arsenic-induced hepatotoxicity in rats. Biol Trace Elem Res. doi:10.1007/s12011-015-0397-1

  40. Vardy DW, Santore R, Ryan A, Giesy JP, Hecker M (2014) Acute toxicity of copper, lead, cadmium, and zinc to early life stages of white sturgeon (Acipenser transmontanus) in laboratory and Columbia River water. Environ Sci Pollut Res. doi:10.1007/s11356-014-2754-6

  41. Vengris VE, Mare CJ (1974) Lead poisoning in chickens and the effect of lead on interferon and antibody production. Can J Comp Med 38(3):328–335

  42. Venkareddy LK, Muralidhara (2015) Potential of casein as a nutrient intervention to alleviate lead (Pb) acetate-mediated oxidative stress and neurotoxicity: first evidence in Drosophila melanogaster. Neurotoxicology. doi:10.1016/j.neuro.2015.03.014

  43. Wang H, Li S, Teng X (2015) The antagonistic effect of selenium on lead-induced inflammatory factors and heat shock proteins mRNA expression in chicken livers. Biol Trace Elem Res. doi:10.1007/s12011-015-0532-z

  44. Wang L, Wang H, Hu M, Cao J, Chen D, Liu Z (2009) Oxidative stress and apoptotic changes in primary cultures of rat proximal tubular cells exposed to lead. Arch Toxicol. doi:10.1007/s00204-009-0425-z

  45. Xu F, Liu S, Li S (2015) Effects of selenium and cadmium on changes in the gene expression of immune cytokines in chicken splenic lymphocytes. Biol Trace Elem Res. doi:10.1007/s12011-015-0254-2

  46. Xu T, Gao X, Liu G (2016) The antagonistic effect of selenium on lead toxicity is related to the ion profile in chicken liver. Biol Trace Elem Res. doi:10.1007/s12011-015-0422-4

  47. Yao HD, Wu Q, Zhang ZW, Li S, Wang XL, Lei XG, Xu SW (2013) Selenoprotein W serves as an antioxidant in chicken myoblasts. Biochim Biophys Acta. doi:10.1016/j.bbagen.2013.01.007

  48. Zhang ZW, Wang QH, Zhang JL, Li S, Wang XL, Xu SW (2012) Effects of oxidative stress on immunosuppression induced by selenium deficiency in chickens. Biol Trace Elem Res. doi:10.1007/s12011-012-9439-0

  49. Zhao W, Liu W, Chen X, Zhu Y, Zhang Z, Yao H, Xu S (2014) Four endoplasmic reticulum resident selenoproteins may be related to the protection of selenium against cadmium toxicity in chicken lymphocytes. Biol Trace Elem Res. doi:10.1007/s12011-014-0135-0

  50. Zhu Y, Li S, Teng X (2016) The involvement of the mitochondrial pathway in manganese-induced apoptosis of chicken splenic lymphocytes. Chemosphere. doi:10.1016/j.chemosphere.2016.03.081

  51. Zwolak I, Zaporowska H (2012) Selenium interactions and toxicity: a review. Cell Biol Toxicol. doi:10.1007/s10565-011-9203-9

Download references


This study was funded by the Scientific Research Projects of Education Department of Heilongjiang Province (No. 12541006) and the Heilongjiang Province on Natural Fund Project (No. 41400172-4-14089).

All authors have read the manuscript and agreed to submit it for consideration in its current form for publication in Environmental Science and Pollution Research.

Author information

Correspondence to Xiaojie Teng or Xiaohua Teng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Xiaoyan Jiao and Kai Yang contributed equally and should be considered co-first authors.

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jiao, X., Yang, K., An, Y. et al. Alleviation of lead-induced oxidative stress and immune damage by selenium in chicken bursa of Fabricius. Environ Sci Pollut Res 24, 7555–7564 (2017). https://doi.org/10.1007/s11356-016-8329-y

Download citation


  • Lead
  • Selenium
  • Chicken
  • Bursa of Fabricius
  • Cytokine
  • Oxidative stress