Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Elemental content of mosses and lichens from Livingston Island (Antarctica) as determined by instrumental neutron activation analysis (INAA)

Abstract

The total content of 8 major and 32 trace elements in four species of mosses and two of lichens as well as neighboring soil and rocks collected from different places of the Livingston Island Antarctica was determined by instrumental neutron activation analysis. The main goals of the project consisted of evidencing the possible trace of anthropogenic contamination as well as the influence of altitude on the distribution of considered elements. In the absence of a unanimously accepted descriptor, enrichment factor, geo-accumulation, and pollution load indices with respect to soil and rocks were used. The data, interpreted within the model of a reference plant, were compared with previous studies regarding the same organisms in similar geographic and climatological areas. The experimental results evidenced different capacity of mosses and lichens to retain the considered elements, but within experimental uncertainties, no traces of anthropogenic pollution were found. At the same time, it was found that the content of most of the elements decreased with the altitude.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Amaro E, Padeiro A, Mão de Ferro A, Mota AM, Leppe M, Verkulich S, Hughes KA, Peter H-U, Canario J (2015) Assessing trace element contamination in Fildes peninsula (King George Island) and Ardley Island Antarctic. Mar Pol Bul 97:523–527. doi:10.1016/j.marpolbul.2015.05.018

  2. Baccolo C, Baroni CM, Delmonte M, Maggi V, Motta A, Nastasi M, Previtali E, Salvatore MC (2014) Neutron activation analysis on sediments from Victoria Land Antarctica: multi-elemental characterization of potential atmospheric dust sources. J Radioanal Nucl Chem 299:1615–1623. doi:10.1007/s10967-013-2851-x

  3. Bargagli R, Sanchez-Hernandez JC, Martella L, Monaci F (1998) Mercury, cadmium, and lead accumulation in Antarctic mosses growing along nutrient and moisture gradients. Pol Bilol 19:316–322

  4. Bargagli R, Sanchez-Hernandez JC, Monaci F (1999) Baseline concentrations of elements in the Antarctic macrolichen Umbilicaria decussata. Chemosphere 38:475–487. doi:10.1016/S0045-6535(98)00211-2

  5. Bargagli R, Forghini F, Celesti C (2000) Elemental composition of the lichen Umbilicaria decussata. Ital J Zool 67(S1):157–162. doi:10.1080/11250000009356371

  6. Bergamaschi L, Rizzio E, Giaveri G, Salvini A, Brandone A, Gallorini M (2016) Lichens as biomonitor and INAA as analytical technique: a very effective formula for trace elements atmospheric pollution studies, http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/40/010/40010602.pdf. Accessed 26.05.2016

  7. Bubach D, Perez Catán S, Di Fonzo C, Dopchiz L, Arribere M, Ansaldo M (2016) Elemental composition of Usnea sp lichen from Potter Peninsula 25 de Mayo (King George) Island Antarctica. Envir Pol 210:238–245. doi:10.1016/j.envpol.2015.11.045

  8. Buat-Menard P, Chesselet R (1979) Variable influence of atmospheric flux on the trace metal chemistry of oceanic suspended matter. Earth Plan Sci Let 42:398–411. doi:10.1016/0012-821X(79)90049-9

  9. COMNAP (2016) https://www.comnap.aq/SitePages/Home.aspx. Accessed 01.07.2016

  10. Conti ME, Pino A, Botrè F, Bocca B, Alimonti A (2009) Lichen Usnea barbata as biomonitor of airborne elements deposition in the Province of Tierra del Fuego (southern Patagonia, Argentina). Ecotox Environ Saf 72:1082–1089. doi:10.1007/s10661-011-1985-y

  11. Convey et al (2014) Review: the spatial structure of Antarctic biodiversity. Ecol Monogr 84:203–244. doi:10.1890/12-2216.1 last accessed 26. 03.2016

  12. Cool Antarctica (2016) http://www.coolantarctica.com/Community/antarctic_bases.php. Accessed 01.10.2016

  13. Culicov OA, Zinicovscaia I, Duliu OG (2016) Active Sphagnum girgensohnii Russow moss biomonitoring of an industrial site in Romania: temporal variation in the elemental content. Bul Envir Contam Toxicol 96:650–656. doi:10.1007/s00128-016-1780-0

  14. Davies JC (2003) Statistic and data analysis in geology, Wiley, ISBN: 978–0–471-17275-8

  15. Espinoza RT (2011) Evaluacion de la calidad del aire en la península Fildes Isla Rey Jorge Antartica biomonitoreo de líquenes como herramienta de gestión, Master Thesis, Universidad de Chile Santiago de Chile, Chile www.mgpa.forestaluchile.cl/Tesis/Tapia%20Romina%20.pdf (in Spanish) (accessed 18.05.2016)

  16. Frontasyeva MV (2011) Neutron activation analysis in the life sciences. Phys Part Nucl 42:332–378. doi:10.1134/S1063779611020043

  17. Frontasyeva MV, Pavlov SS (2000) Analytical investigation at the IBR-2 reactor in Dubna. Proceedings of the VII International Seminar on Interaction of Neutrons with Nuclei, Dubna, May 17-20, 2000, E3-2000-192, p. 219-227, JINR Dubna, Russian Federation

  18. Fuga A, Saiki M, Marcelli MP, Saldiva PHN (2008) Atmospheric pollutants monitoring by analysis of epiphytic lichens. Envir Pol 151:334–340. doi:10.1016/j.envpol.2007.06.041

  19. Ganeva A, Yurukova L (2004) Data on species composition and background concentrations of some elements in moss samples from Livingston Island (Antarctica). Herzologia 17:199–206

  20. Gonzáles S, Osores J, Mendoza P (2002) Study of Antarctic lichens as environmental biomonitors in the admiralty bay: preliminary study of trace elements contents by neutron activation analysis, Informe Científico - Tecnológico 1998–2001 del IPEN,  ISSN: 1684–1662, http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/34/078/34078110.pdf (accessed 22.12.2016)

  21. Hammer Ø, Harper DAT, Ryan PD (2001) Past: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4 art. 4: 9 pp http://palaeo-electronica.org/2001_1/past/issue1_01.htm. Last accessed 05.06.2016

  22. Harikumar PS, Nasir UP, Mujeebu Rahman MPU (2009) Distribution of heavy metals in the core sediments of a tropical wetland system international. J Envir Sci Technol 6:225–232 www.bioline.org.br/pdf?st09025 (accessed 01.06.2016)

  23. Hobbs GJ (1968) The geology of the South Shetland Islands: IV—the geology of Livingston Island. Scientific Report No. 47, British Antarctic Survey, London, http://nora.nerc.ac.uk/509456/1/The%20geology%20of%20the%20South%20Shetland%20Islands%20-%20IV%20-%20the%20geology%20of%20Livingston%20Island%20-%20BAS%20Scientific%20Report%2047.pdf. Accessed 06.10.2016

  24. Kłos A, Rajfur M, Wacławek M (2011) Application of enrichment factor (EF) to the interpretation of results from the biomonitoring studies. Ecol Chem Engin S 18:171–182 www.tchie.uni.opole.pl/freeECE/S_18_2/KlosRajfur_18(S2).pdf (accessed 25.05.2016

  25. Ilieva R, Grozeva M (1999) Morphology of soils from the Livingston Island South Shetland Islands (the Antarctic). Bulg Antarct Res Life Sci 2:97–105

  26. Laguna-Defior C, Pintado A, Green TGA, Blanquer JM, Sancho LG (2015) Distributional and ecophysiological study on the Antarctic lichens species pair Usnea antarctica/Usnea aurantiaco-atra. Polar Biol. doi:10.1007/s00300-015-1832-7

  27. Lim H, Han M, Seo D, Kim JH, Lee JI, Park H, Hur J-S, Cheong YH, Heo JS, Yoon HI, Cho J-S (2009) Heavy metal concentrations in the fruticose lichen Usnea aurantiacoatra from King George Island South Shetland Islands West Antarctica. J Korean Soc Appl Biol Chem 52:503–508

  28. Markert B (1992) Establishing of ‘Reference Plant’ for inorganic characterization of different plant species by chemical fingerprinting. Water, Air, & Soil Pollution 64:533–538. doi:10.1007/BF00483363

  29. Metcheva R, Yurukova L, Teodorova S, Nikolova E (2006) The penguin feathers as bioindicator of Antarctica environmental state. Science of The Total Environment 362:259-265. doi:10.1016/j.scitotenv.2005.05.008

  30. Michel RFM, Schaefer CEGR, Dias LE, Simas FNB, de Melo Benites V, de Sa Mendonça E (2006) Ornithogenic gelisols (cryosols) from maritime Antarctica: pedogenesis vegetation and carbon studies. Soil Sci Soc America J 70:1370–1376. doi:10.2136/sssaj2005.0178

  31. Müller G (1969) Index of geoaccumulation in sediments of the Rhine River. Geol J 2:109–118

  32. Norouzi S, Khademi H, Cano AF, Acosta JA (2016) Biomagnetic monitoring of heavy metals contamination in deposited atmospheric dust, a case study from Isfahan, Iran. J Environ Manag 173:55–64. doi:10.1016/j.jenvman.2016.02.035

  33. Nickel S, Hertel A, Pesch R, Schröder W, Steinnes E, Uggerud HT (2014) Modeling and mapping spatio-temporal trends of heavy metal accumulation in moss and natural surface soil monitored 1990-2010 throughout Norway by multivariate generalized linear models and geostatistics. Atmos Environ 99:85–93. doi:10.1016/j.atmosenv.2014.09.059

  34. Ostrovnaya TM (2000) Tables for identification of nuclides formed in nuclear reactors. Preprint E14-2000-178, p. 47, JINR Dubna, Russian Federation

  35. Ostrovnaya TM, Nefedyeva LS, Nazarov VM et al (1993) Software for INAA on the basis of relative and absolute methods using nuclear data base. activation analysis in environment protection, Preprint D-14-93-325, p. 319–325, JINR Dubna, Russian Fedreation

  36. Osycza P, Dutkiewicz EM, Olch M (2007) Trace elements contents in selected moss and lichen species collected within Antarctic research stations, Polish. J Ecol 55:39–48 https://www.miiz.waw.pl/pliki/article/ar55_1_04.pdf (accessed 27.05.2016

  37. Otero XL, Fernández S, de Pablo Hernandez MA, Nizoli EC, Quesada A (2013) Plant communities as a key factor in biogeochemical processes involving micronutrients (Fe Mn Co and Cu) in Antarctic soils (Byers Peninsula maritime Antarctica). Geoderma 195–196:145–154. doi:10.1016/j.geoderma.2012.11.018

  38. Øvstedal DO, Lewis Smith RI (2001) Lichens of Antarctica and South Georgia: a guide to their identification and ecology. Cambridge University Press, Cambridge ISBN: 978-0521662413

  39. Øvstedal DO, Lewis Smith RI (2009) Further additions to the lichen flora of Antarctica and South Georgia. Nova Hedwigia 88:157–168

  40. Øvstedal DO, Schaefer CEGR (2013) A new species from Heritage Range Ellsworth mountains Antarctica. Hoehnea 40:361–364. doi:10.1590/S2236-89062013000200006

  41. Pacheco AMG, Freitas MC (2009) Trace-element enrichment in epiphytic lichens and tree bark at Pico Island Azores Portugal. J Air Waste Manag Assoc 59:411–418. doi:10.3155/1047-3289.59.4.411

  42. Pannewitz S, Schlensog M, Allan Green TG, Sancho LG, Schroeter B (2003) Are lichens active under snow in continental Antarctica?. Oecologia 135 (1):30-38. doi:10.1007/s00442-002-1162-7

  43. Peck LS (2005) Prospects for survival in the Southern Ocean: vulnerability of benthic species to temperature change. Antarct Sci 17:497–507. doi:10.1017/S0954102005002920

  44. Poblet A, Andrade S, Scagliola M, Vodopivez C, Curtosi A, Pucci A, Marcovecchio J (1997) The use of epilithic Antarctic lichens (Usnea aurantiaco-atra and U. antarctica) to determine deposition patterns of heavy metals in the Shetland Islands, Antarctica. Sci Tot Environ 207:187–194. doi:10.1016/S0048-9697(97)00265-9

  45. Popescu IV, Frontasyeva MV, Stihi C, Cimpoca G-V, Radulescu C, State G, Gheboianu A, Oros C, Culicov O, Bancuta I, Dulama I (2011) Atomic and nuclear method applied in the study of heavy polluting elements. Rom Rep Phys 63(Suppl):1205–1214 http://www.rrp.infim.ro/2011_63_supliment.html (accessed 05.06.2016)

  46. Prudêncio MI, Gouveia MA, Freitas MC, Chaves L, Marques AP (1997) Soil versus lichen analysis on elemental dispersion studies (North of Portugal). Proceedings of the International Workshop: BioMAP 21–24 September 1997 IAEA-TECDOC-1152 I.E. Vienna 2000 http://www-pub.iaea.org/MTCD/Publications/PDF/te_1152_prn.pdf. Accessed 10.06.2016

  47. Rudnic RL, Gao S (2003) Composition of the continental crust. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, vol vol. 3. Elsevier-Pergamon, Oxford, London, pp. 1–64 ISBN: 978 008 098 3004

  48. Sancho LG, Schulz F, Schroeter B, Kappen L (1999) Bryophyte and lichen flora of South Bay (Livingston Island: South Shetland Islands Antarctica). Nova Hedwigia 68:301–337

  49. Smykla J, Szarek Gwiazda E, Krzewicka B (2005) Trace elements in the lichens Usnea aurantiaco-atra and Usnea antarctica from the vicinity of Uruguay’s Artigas research station on King George Island maritime Antarctic. Polish Botan Stud 19:49–57

  50. Sokolovska M, Chipev N, Ilieva R, Nustorova M, Petrova L, Vergilov Z, Hristova R, Bech J (2015) Soils in Livingston Island: composition properties and ecological aspects, in: C Pimpirev and N Chipev (Eds), Bulgarian Antarctic research: a synthesis (eds.) Sofia St. Kl. Ohridski University Press, pp. 308-319, ISBN 978-954-07-3939-7

  51. Szopińska M, Namieśnik J, Polkowska Z (2016) How important is research on pollution levels in Antarctica? Historical approach, difficulties and current trends. Rev Environ Contam Toxicol :1–78. doi:10.1007/398_2015_5008Springer

  52. Tomlinson DL, Wilson JG, Harris CR, Jeffrey DW (1980) Problems in the assessment of heavy-metals in the estuaries and the formation of the pollution index. Helgoland Mar Res 33:566–575. doi:10.1007/BF02414780

  53. Varrica A, Aiuppa A, Dongarra G (2000) Volcanic and anthropogenic contribution to heavy metal content in lichens from Mt. Etna and Vulcano island (Sicily). Environ Pol 108:153–162. doi:10.1016/S0269-7491(99)00246-8

  54. Yurukova L, Ganeva A (1999) Bioaccumulative and floristic characteristics of mosses near St Kliment Ohridski Antarctic Base Station of Bulgaria. J Balkan Ecol 2:65–71

  55. Zvěřina O, Láska K, Červenka R, Kuta J, Coufalík P, Komárek J (2014) Analysis of mercury and other heavy metals accumulated in lichen Usnea antarctica from James Ross Island Antarctica. Environ Monit Asses 186:9089–9100. doi:10.1007/s10661-014-4068-z

  56. Williams L, Borchhardt N, Colesie C, Baum C, Komsic-Buchmann K, Rippin M, Becker B, Karsten U, Büdel B (2016) Biological soil crusts of Arctic Svalbard and of Livingston Island. Antarctica Polar Biology. doi:10.1007/s00300-016-1967-1 http://link.springer.com/article/10.1007/s00300-016-1967-1 (accessed 20.07.2016

  57. Wolterbeek HT, Garty J, Reis MA, Freitas MC (2003) Biomonitors in use: lichens and metal air pollution. In: Bioindicators and biomonitors principles concepts and applications. In: Markert BA, Breure AM, Zechmeister HG (eds) Trace metals and other contaminations in the environment. Elsevier, Amsterdam, pp. 377–419 ISBN: 978-0-444-51554-4

Download references

Acknowledgements

The authors would like to thank the staff of the Department of Activation Analysis and Applied Research of FLNP JINR-Dubna for handling the radioactive samples as well as to express their gratitude to Professors R. Mocanu, M. Frontasyeva, and C. Sarbu for their support and advice. At the same time, the authors are deep indebted to three anonymous reviewers for their remarks and comments. The project was partially accomplished within the protocol no. 4322-4-14/16 between JINR-Dubna and the University of Bucharest.

Author information

Correspondence to Octavian G. Duliu.

Additional information

Responsible editor: Roberto Terzano

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Culicov, O.A., Yurukova, L., Duliu, O.G. et al. Elemental content of mosses and lichens from Livingston Island (Antarctica) as determined by instrumental neutron activation analysis (INAA). Environ Sci Pollut Res 24, 5717–5732 (2017). https://doi.org/10.1007/s11356-016-8279-4

Download citation

Keywords

  • Antarctica
  • Livingston Island
  • Mosses
  • Lichens
  • Environmental contamination
  • Major elements
  • Trace elements