Environmental Science and Pollution Research

, Volume 24, Issue 5, pp 4973–4989 | Cite as

Spatio-temporal variability of fluorescent dissolved organic matter in the Rhône River delta and the Fos-Marseille marine area (NW Mediterranean Sea, France)

  • Nicolas Ferretto
  • Marc Tedetti
  • Catherine Guigue
  • Stéphane Mounier
  • Patrick Raimbault
  • Madeleine Goutx
Research Article


The spatio-temporal variability of fluorescent dissolved organic matter (FDOM) and its relationships with physical (temperature, salinity) and chemical (nutrients, chlorophyll a, dissolved and particulate organic carbon, nitrogen and phosphorus) parameters were investigated in inland waters of the Rhône River delta and the Fos-Marseille marine area (northwestern Mediterranean, France). Samples were taken approximately twice per month in two inland sites and three marine sites from February 2011 to January 2012. FDOM was analysed using fluorescence excitation-emission matrices (EEMs) coupled with parallel factor analysis (PARAFAC). In inland waters, humic-like components C1 (λExEm: 250 (330)/394 nm) and C3 (λExEm: 250 (350)/454 nm) dominated over one tryptophan-like component C2 (λExEm: 230 (280)/340 nm), reflecting a background contribution of terrigenous material (~67% of total fluorescence intensity, in quinine sulphate unit (QSU)) throughout the year. In marine waters, protein-like material, with tyrosine-like C4 (λExEm: <220 (275)/<300 nm) and tryptophan-like C5 (λExEm: 230 (280)/342 nm), dominated (~71% of total fluorescence intensity, in QSU) over a single humic-like component C6 (λExEm: 245 (300)/450 nm). In inland waters of the Rhône River delta, humic-like components C1 and C3 were more abundant in autumn-winter, very likely due to inputs of terrestrial organic matter from rainfalls, runoffs and wind-induced sediment resuspension. In marine sites, intrusions of the Berre Lagoon and Rhône River waters had a significant impact on the local biogeochemistry, leading to higher fluorescence intensities of humic- and protein-like components in spring-summer. On average, the fluorescence intensities of FDOM components C4, C5 and C6 increased by 33–81% under lower salinity. This work highlights the complex dynamics of FDOM in coastal waters and confirms the link between marine FDOM and the Rhône River freshwater intrusions on larger spatial and temporal scales in the Fos-Marseille marine area.


Dissolved organic matter Fluorescence PARAFAC Rhône River Vaccarès pond Bay of Marseille Mediterranean Sea 



We are grateful to the captain and crew of the R/V Antédon 2 for their help during the sampling. We warmly thank C. Pinazo for providing satellite maps and Chritophe Yohia (OSU Pytheas) for providing Meteorological data. We acknowledge the MOOSE program (Mediterranean Oceanic Observing System on Environment) for additional rain fall and Rhône flow data. We thank D. Lefèvre and A. Robert for the use of the Shimadzu spectrophotometer as well as the core parameter analytical platform (PAPB) of the Mediterranean Institute of Oceanography (MIO) for performing chemical analyses. Two anonymous Reviewers are acknowledged for their relevant comments and corrections, which contributed to improve the quality of this manuscript. This study is part of the ‘IBISCUS’ research project that was funded by the Agence Nationale de la Recherche (ANR)—ECOTECH program (project ANR-09-ECOT-009-01). This work also contributes to the Work Package 3 of the CNRS-INSU MISTRALS ‘MERMEX’ project.

Supplementary material

11356_2016_8255_MOESM1_ESM.docx (2.5 mb)
ESM 1 (DOCX 2570 kb.)


  1. Akkanen J, Vogt RD, Kukkonen JVK (2004) Essential characteristics of natural dissolved organic matter affecting the sorption of hydrophobic organic contaminants. Aquat Sci 66:171–177CrossRefGoogle Scholar
  2. Andrew AA, Del Vecchio R, Subramaniam A, Blough NV (2013) Chromophoric dissolved organic matter (CDOM) in the equatorial Atlantic Ocean: optical properties and their relation to CDOM structure and source. Mar Chem 148:33–43CrossRefGoogle Scholar
  3. Banas D, Grillas P, Auby I, Lescuyer F, Coulet E, Moreteau JC, Millet B (2005) Short time scale changes in underwater irradiance in a wind-exposed lagoon (Vaccarès lagoon, France): efficiency of infrequent field measurements of water turbidity or weather data to predict irradiance in the water column. Hydrobiologia 551:3–16CrossRefGoogle Scholar
  4. Boutron O, Bertrand O, Fiandrino A, Höhener P, Sandoz A, Chérain Y, Coulet E, Chauvelon P (2015) An unstructured numerical model to study wind-driven circulation patterns in a managed coastal Mediterranean wetland: the Vaccarès lagoon system. Water 7:5986–6016CrossRefGoogle Scholar
  5. Benner R (2002) Chemical composition and reactivity. In: Hansell DA, Carlson CA (eds) Biogeochemistry of marine dissolved organic matter. Academic Press, San Diego, pp. 59–90CrossRefGoogle Scholar
  6. Benner R, Louchouarn P, Amon RMW (2005) Terrigenous dissolved organic matter in the Arctic Ocean and its transport to surface and deep waters of the North Atlantic. Glob Biogeochem Cycles 19:GB2025. doi: 10.1029/2004GB002398 CrossRefGoogle Scholar
  7. Benner R, Opsahl S (2001) Molecular indicators of the sources and transformations of dissolved organic matter in the Mississippi river plume. Org Geochem 32:597–611CrossRefGoogle Scholar
  8. Bittar TB, Vieira AAH, Stubbins A, Mopper K (2015) Competition between photochemical and biological degradation of dissolved organic matter from the cyanobacteria Microcystis aeruginosa. Limnol Oceanogr 60:1172–1194CrossRefGoogle Scholar
  9. Blough NV, Del Vecchio R (2002) Chromophoric DOM in the coastal environment. In: Hansell DA, Carlson CA (eds) Biogeochemistry of marine dissolved organic matter. Academic Press, San Diego, pp. 509–546CrossRefGoogle Scholar
  10. Borisover M, Laor Y, Parparov A, Bukhanovsky N, Lado M (2009) Spatial and seasonal patterns of fluorescent organic matter in Lake Kinneret (sea of galilee) and its catchment basin. Water Res 43:3104–3116CrossRefGoogle Scholar
  11. Boyd TJ, Osburn CL (2004) Changes in CDOM fluorescence from allochthonous and autochthonous sources during tidal mixing and bacterial degradation in two coastal estuaries. Mar Chem 89:189–210CrossRefGoogle Scholar
  12. Cammack WKL, Kalff J, Prairie YT, Smith EM (2004) Fluorescent dissolved organic matter in lakes: relationships with heterotrophic metabolism. Limnol Oceanogr 49:2034–2045CrossRefGoogle Scholar
  13. Carlson CA (2002) Production and removal processes. In: Hansell DA, Carlson CA (eds) Biogeochemistry of marine dissolved organic matter. Academic Press, San Diego, pp. 91–152CrossRefGoogle Scholar
  14. Carstea EM, Baker A, Bieroza M, Reynolds D (2010) Continuous fluorescence excitation-emission matrix monitoring of river organic matter. Water Res 44:5356–5366CrossRefGoogle Scholar
  15. Cauwet G (2002) DOM in the coastal zone. In: Hansell DA, Carlson CA (eds) Biogeochemistry of marine dissolved organic matter. Academic Press, San Diego, pp. 579–609CrossRefGoogle Scholar
  16. Céa B, Lefèvre D, Chirurgien L, Raimbault P, Garcia N, Charrière B, Grégori G, Ghiglione JF, Barani A, Lafont M, Van Wambeke F (2015) An annual survey of bacterial production, respiration and ectoenzyme activity in coastal NW Mediterranean waters: temperature and resource controls. Environ Sci Pollut Res 22:13654–13668CrossRefGoogle Scholar
  17. Chari NVHK, Keerthi S, Sarma NS, Rao Pandi S, Chiranjeevulu G, Kiran R, Koduru U (2013) Fluorescence and absorption characteristics of dissolved organic matter excreted by phytoplankton species of western Bay of Bengal under axenic laboratory condition. J Exper Mar Biol Ecol 445:148–155CrossRefGoogle Scholar
  18. Chauvelon P (1998) A wetland managed for agriculture as an interface between the Rhône river and the Vaccarès lagoon (Camargue, France): transfers of water and nutrients. Hydrobiologia 373(374):181–191CrossRefGoogle Scholar
  19. Chauvelon P, Tournoud MG, Sandoz A (2003) Integrated hydrological modelling of a managed coastal Mediterranean wetland (Rhone delta, France): initial calibration. Hydrol Earth Syst Sci Discuss 7:123–132CrossRefGoogle Scholar
  20. Coble PG (1996) Characterization of marine and terrestrial DOM in seawater using excitation emission matrix spectroscopy. Mar Chem 51:325–346CrossRefGoogle Scholar
  21. Coble PG (2007) Marine optical biogeochemistry – the chemistry of ocean color. Chem Rev 107:402–418CrossRefGoogle Scholar
  22. Comoretto L, Arfib B, Chiron S (2007) Pesticides in the Rhône river delta (France): basic data for a field-based exposure assessment. Sci Tot Environ 380:124–132CrossRefGoogle Scholar
  23. Cory RM, McKnight DM (2005) Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter. Environ Sci Technol 39:8142–8149CrossRefGoogle Scholar
  24. De Groot CJ, Golterman H (1999) Le risque d’eutrophisation de l'Etang de Vaccarès et des marais de la Camargue (Delta du Rhône, France). Ecologie 30:91–100Google Scholar
  25. Delpy F, Pagano M, Blanchot J, Carlotti F, Thibault-Botha D (2012) Man-induced hydrological changes, metazooplankton communities and invasive species in the Berre Lagoon (Mediterranean Sea, France). Mar Pollut Bull 64:1921–1932CrossRefGoogle Scholar
  26. Determann S, Lobbes JM, Reuter R, Rullkötter J (1998) Ultraviolet fluorescence excitation and emission spectroscopy of marine algae and bacteria. Mar Chem 62:137–156CrossRefGoogle Scholar
  27. Diaz SB, Morrow JH, Booth CR (2000) UV physics and optics. In: de Mora S, Demers S, Vernet M (eds) The effects of UV radiation in the marine environment. Cambridge University Press, Cambridge, pp. 35–71CrossRefGoogle Scholar
  28. Dittmar T, Stubbins A (2014) Dissolved organic matter in aquatic systems. Treatise on Geochemistry, Second edition, pp. 125–156Google Scholar
  29. Fellman JB, Hood E, Spencer RGM (2010) Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: a review. Limnol Oceanogr 55:2452–2462CrossRefGoogle Scholar
  30. Ferretto N, Tedetti M, Guigue C, Mounier S, Redon R, Goutx M (2014) Identification and quantification of known polycyclic aromatic hydrocarbons and pesticides in complex mixtures using fluorescence excitation-emission matrices and parallel factor analysis. Chemosphere 107:344–353CrossRefGoogle Scholar
  31. Fichot CG, Benner R (2014) The fate of terrigenous dissolved organic carbon in a river-influenced ocean margin. Glob Biogeochem Cycles 28:300–318CrossRefGoogle Scholar
  32. Fichot CG, Lohrenz SE, Benner R (2014) Pulsed, cross-shelf export of terrigenous dissolved organic carbon to the Gulf of Mexico. J Geophys Res Oceans:119. doi: 10.1002/2013JC009424
  33. Fraysse M, Pairaud I, Ross ON, Faure VM, Pinazo C (2014) Intrusion of Rhone River diluted water into the Bay of Marseille: generation processes and impacts on ecosystem functioning. J Geophys Res 119:6535–6556CrossRefGoogle Scholar
  34. Guigue C, Tedetti M, Ferretto N, Garcia N, Méjanelle L, Goutx M (2014) Spatial and seasonal variabilities of dissolved hydrocarbons in surface waters from the northwestern Mediterranean Sea: results from one year intensive sampling. Sci Tot Environ 466–467:650–662CrossRefGoogle Scholar
  35. Hansell DA, Carlson CA, Repeta DJ, Schlitzer R (2009) Dissolved organic matter in the ocean. A controversy stimulates new insights Oceanography 22:52–61Google Scholar
  36. Hedges JI, Keil RG, Benner R (1997) What happens to terrestrial organic matter in the ocean? Org Geochem 27:195–212CrossRefGoogle Scholar
  37. Helms JR, Stubbins A, Ritchie JD, Minor EC, Kieber DJ, Mopper K (2008) Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnol Oceanogr 53:955–969CrossRefGoogle Scholar
  38. Hirose K (2007) Metal–organic matter interaction: ecological roles of ligands in oceanic DOM. Appl Geochem 22:1636–1645CrossRefGoogle Scholar
  39. Houghton RA (2007) Balancing the global carbon budget. Annu Rev Earth Planet Sci 35:313–347CrossRefGoogle Scholar
  40. Hudson N, Baker A, Reynolds D (2007) Fluorescence analysis of dissolved organic matter in natural, waste and polluted waters—a review. River Res Appl 23:631–649CrossRefGoogle Scholar
  41. Huguet A, Vacher L, Saubusse S, Etcheber H, Abril G, Relexans S, Ibalot F, Parlanti (2010) New insights into the size distribution of fluorescent dissolved organic matter in estuarine waters. Org Geochem 41:595–610CrossRefGoogle Scholar
  42. Ishii SKL, Boyer TH (2012) Behavior of reoccurring PARAFAC components in fluorescent dissolved organic matter in natural and engineered systems: a critical review. Environ Sci Technol 46:2006–2017CrossRefGoogle Scholar
  43. Jaffé R, McKnight DM, Maie N, Cory RM, McDowell WH, Campbell JL (2008) Spatial and temporal variations in DOM composition in ecosystems: the importance of long-term monitoring of optical properties. J Geophys Res 113:G04032. doi: 10.1029/2008JG000683 CrossRefGoogle Scholar
  44. Jiao N, Herndl GJ, Hansell DA, Benner R, Kattner G, Wilhelm SW, Kirchman DL, Weinbauer MG, Luo T, Chen F, Azam F (2010) Microbial production ofrecalcitrant dissolved organic matter: long-term carbon storage in the global ocean. Nat Rev Microbiol 8:593–599CrossRefGoogle Scholar
  45. Joliffe IT (1986) Principal component analysis. Springer-Verlag, p. 271Google Scholar
  46. Jørgensen L, Stedmon CA, Kragh T, Markager S, Middelboe M, Søndergaard M (2011) Global trends in the fluorescence characteristics and distribution of marine dissolved organic matter. Mar Chem 126:139–148CrossRefGoogle Scholar
  47. Kowalczuk P, Durako MJ, Young H, Kahn AE, Cooper WJ, Gonsior M (2009) Characterization of dissolved organic matter fluorescence in the South Atlantic bight with use of PARAFACmodel: interannual variability. Mar Chem 113:182–196CrossRefGoogle Scholar
  48. Krachler R, Krachler RF, Wallner G, Hann S, Laux M, Cervantes Recalde MF, Jirsa F, Neubauer E, von der Kammer F, Hofmann T, Keppler BK (2015) River-derived humic substances as iron chelators in seawater. Mar Chem 174:85–93CrossRefGoogle Scholar
  49. Kuwahara VS, Nozaki S, Nakano J, Toda T, Kikuchi T, Taguchi S (2015) 18-year variability of ultraviolet radiation penetration in the mid-latitude coastal waters of the western boundary Pacific. Estuar Coast Shelf Sci 160:1–9CrossRefGoogle Scholar
  50. Lønborg C, Álvarez-Salgado XA, Davidson K, Martínez-García S, Teira E (2010) Assessing the microbial bioavailability and degradation rate constants of dissolved organic matter by fluorescence spectroscopy in the coastal upwelling system of the Ría de Vigo. Mar Chem 119:121–129CrossRefGoogle Scholar
  51. Lønborg C, Álvarez-Salgado XA, Davidson K, Miller AEJ (2009) Production of bioavailable and refractory dissolved organic matter by coastal heterotrophic microbial populations. Estuar Coast Shelf Sci 82:682–688CrossRefGoogle Scholar
  52. Luciani X, Mounier S, Paraquetti HHM, Redon R, Lucas Y, Bois A, Lacerda LD, Raynaud M, Ripert M (2008) Tracing of dissolved organic matter from the Sepetiba Bay (Brazil) by PARAFAC analysis of total luminescence matrices. Mar Environ Res 65:148–157CrossRefGoogle Scholar
  53. Ludwig W, Dumont E, Meybeck M, Heussner S (2009) River discharges of water and nutrients to the Mediterranean and Black Sea: major drivers for ecosystem changes during past and future decades? Progr Oceanogr 80:199–217CrossRefGoogle Scholar
  54. Maie N, Scully NM, Pisani O, Jaffé R (2007) Composition of a protein-like fluorophore of dissolved organic matter in coastal wetland and estuarine ecosystems. Water Res 41:563–570CrossRefGoogle Scholar
  55. Millet B, Robert C, Grillas P, Coughlan C, Banas D (2010) Numerical modelling of vertical suspended solids concentrations and irradiance in a turbid shallow system (Vaccares, Se France). Hydrobiologia 638:161–179CrossRefGoogle Scholar
  56. Mopper K, Kieber DJ (2002) Photochemistry and the cycling of carbon, Sulphur, nitrogen and phosphorus. In: Hansell DA, Carlson CA (eds) Biogeochemistry of marine dissolved organic matter. Academic Press, San Diego, pp. 455–507CrossRefGoogle Scholar
  57. Mopper K, Kieber DJ, Stubbins A (2015) Marine photochemistry: processes and impacts. In: Hansell DA, Carlson CA (eds) Biogeochemistry of marine dissolved organic matter, 2nd edn. Academic Press, Burlington, pp. 389–450CrossRefGoogle Scholar
  58. Moutin T, Raimbault P, Golterman HL, Coste B (1998) The input of nutrients by the Rhône river into the Mediterranean Sea: recent observations and comparison with earlier data. Hydrobiologia 373(374):237–246CrossRefGoogle Scholar
  59. Murphy KR, Bro R, Stedmon CA (2014) Chemometric analysis of organic matter fluorescence. In: Coble PG, Lead J, Baker A, Reynolds DM, Spencer RGM (eds) Aquatic Organic Matter Fluorescence. Cambridge University Press, New York, pp. 339–375CrossRefGoogle Scholar
  60. Murphy KR, Butler KD, Spencer RGM, Stedmon CA, Boehme JR, Aiken GR (2010) Measurement of dissolved organic matter fluorescence in aquatic environments: an interlaboratory comparison. Environ Sci Technol 44:9405–9412CrossRefGoogle Scholar
  61. Murphy KR, Stedmon CA, Waite TD, Ruiz GM (2008) Distinguishing between terrestrial and autochthonous organic matter sources in marine environments using fluorescence spectroscopy. Mar Chem 108:40–58CrossRefGoogle Scholar
  62. Nagata T (2000) Production mechanisms of dissolved organic matter. In: Kirchman DL (ed) Microbial ecology of the oceans. Wiley-Liss, New York, pp. 121–152Google Scholar
  63. Nelson NB, Siegel DA (2013) The global distribution and dynamics of chromophoric dissolved organic matter. Annu Rev Mar Sci 5:447–476CrossRefGoogle Scholar
  64. Nieto-Cid M, Álvarez-Salgado XA, Pérez FF (2006) Microbial and photochemical reactivity of fluorescent dissolved organic matter in a coastal upwelling system. Limnol Oceanogr 51:1391–1400CrossRefGoogle Scholar
  65. Ohno T (2002) Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter. Environ Sci Technol 36:742–746CrossRefGoogle Scholar
  66. Ortega-Retuerta E, Frazer TK, Duarte CM, Ruiz-Halpern S, Tovar-Sanchez A, Arrieta JM, Reche I (2009) Biogeneration of chromophoric dissolved organic matter by bacteria and krill in the Southern Ocean. Limnol Oceanogr 54:1941–1950CrossRefGoogle Scholar
  67. Osburn CL, Boyd TJ, Montgomery MT, Bianchi TS, Coffin RB, Paerl HW (2016) Optical proxies for terrestrial dissolved organic matter in estuaries and coastal waters. Front Mar Sci 2:127. doi: 10.3389/fmars. 2015.00127 CrossRefGoogle Scholar
  68. Pairaud IL, Gatti J, Bensoussan N, Verney R, Garreau P (2011) Hydrology and circulation in a coastal area off Marseille: validation of a nested 3D model with observations. J Mar Syst 88:20–33CrossRefGoogle Scholar
  69. Panagiotopoulos C, Sempéré R, Para J, Raimbault P, Rabouille C, Charrière B (2012) The composition and flux of particulate and dissolved carbohydrates from the Rhone River into the Mediterranean Sea. Biogeoscience 9:1827–1844CrossRefGoogle Scholar
  70. Para J, Coble PG, Charrière B, Tedetti M, Fontana C, Sempéré R (2010) Fluorescence and absorption properties of chromophoric dissolved organic matter (CDOM) in coastal surface waters of the northwestern Mediterranean Sea (bay of Marseilles, France). Biogeosciences 7:4083–4103CrossRefGoogle Scholar
  71. Parlanti E, Wo K, Geo L, Lamotte M (2000) Dissolved organic matter fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone submitted to anthropogenic inputs. Org Geochem 31:1765–1781CrossRefGoogle Scholar
  72. Patel-Sorrentino N, Mounier S, Benaim JY (2002) Excitation–emission fluorescence matrix to study pH influence on organic matter fluorescence in the Amazon basin rivers. Water Res 36:2571–2581CrossRefGoogle Scholar
  73. Raimbault P, Lantoine F, Neveux J (2004) Dosage rapide de la chlorophylle a et des phéopigments a par fluorimétrie après extraction au méthanol. Comparaison avec la méthode classique d’extraction à l'acétone. Océanis 30:189–205Google Scholar
  74. Raimbault P, Pouvesle W, Sempere R (1999) Wet-oxidation and automated colorimetry for simultaneous determination of organic carbon, nitrogen and phosphorus dissolved in seawater. Mar Chem 66:161–169CrossRefGoogle Scholar
  75. Roche H, Vollaire Y, Martin E, Rouer C, Coulet E, Grillas P, Banas D (2009) Rice fields regulate organochlorine pesticides and PCBs in lagoons of the nature Reserve of Camargue. Chemosphere 75:526–533CrossRefGoogle Scholar
  76. Rochelle-Newall EJ, Fisher TR (2002) Production of chromophoric dissolved organic matter fluorescence in marine and estuarine environments: an investigation into the role of phytoplankton. Mar Chem 77:7–21CrossRefGoogle Scholar
  77. Romera-Castillo C, Sarmento H, Alvarez-Salgado XA, Gasol JM, Marrase C (2010) Production of chromophoric dissolved organic matter by marine phytoplankton. Limnol Oceanogr 55:446–454CrossRefGoogle Scholar
  78. Rostan JC, Cellot B (1995) On the use of UV spectrophotometry to assess dissolved organic carbon origin variations in the upper Rh6ne river. Aquatic Sci 57:70–80CrossRefGoogle Scholar
  79. Sempéré R, Charrière B, Van Wambeke F, Cauwet G (2000) Carbon inputs of the Rhone River to the Mediterranean Sea: biogeochemical implications. Glob Biogeochem Cy 14:669–681CrossRefGoogle Scholar
  80. Siegel DA, Maritorena S, Nelson NB, Behrenfeld MJ (2005) Independence and interdependencies of global ocean color properties: reassessing the bio-optical assumption. J Geophys Res 110:C07011. doi: 10.1029/2004JC002527 CrossRefGoogle Scholar
  81. Siegenthaler U, Sarmiento J (1993) Atmospheric carbon dioxide and the ocean. Nature 365:119–125CrossRefGoogle Scholar
  82. Stedmon CA, Bro R (2008) Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial. Limnol Oceanogr Meth 6:572–579CrossRefGoogle Scholar
  83. Stedmon CA, Cory RM (2014) Biological origins and fate of fluorescent dissolved organic matter in aquatic environments. In: Coble PG, Lead J, Baker A, Reynolds DM, Spencer RGM (eds) Aquatic Organic Matter Fluorescence. Cambridge University Press, New York, pp. 278–299CrossRefGoogle Scholar
  84. Stedmon CA, Markager S (2005a) Tracing the production and degradation of autochthonous fractions of dissolved organic matter by fluorescence analysis. Limnol Oceanogr 50:686–697CrossRefGoogle Scholar
  85. Stedmon CA, Markager S (2005b) Resolving the variability of dissolved organic matter fluorescence in a temperate estuary and its catchment using PARAFAC analysis. Limnol Oceanogr 50:686–697CrossRefGoogle Scholar
  86. Stedmon CA, Markager S, Bro R (2003) Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Mar Chem 82:239–254CrossRefGoogle Scholar
  87. Steinberg DK, Nelson N, Carlson C, Prusak AC (2004) Production of chromophoric dissolved organic matter (CDOM) in the open ocean by zooplankton and the colonial cyanobacterium Trichodesmium spp. Mar Ecol Prog Ser 267:45–56CrossRefGoogle Scholar
  88. Tedetti M, Guigue C, Goutx M (2010) Utilization of a submersible UV fluorometer for monitoring anthropogenic inputs in the Mediterranean coastal waters. Mar Pollut Bull 60:350–362CrossRefGoogle Scholar
  89. Tedetti M, Longhitano R, Garcia N, Guigue C, Ferretto N, Goutx M (2012) Fluorescence properties of dissolved organic matter in coastal Mediterranean waters influenced by a municipal sewage effluent (Bay of Marseilles, France). Environ Chem 9:438–449CrossRefGoogle Scholar
  90. Tedetti M, Sempéré R (2006) Penetration of ultraviolet radiation in the marine environment. A review. Photochem Photobiol 82:389–397CrossRefGoogle Scholar
  91. The MerMex group (2011) Marine ecosystems’ responses to climatic and anthropogenic forcings in the Mediterranean. Prog Oceanogr 91:97–166CrossRefGoogle Scholar
  92. Tréguer P, LeCorre P (1975) Manuel d’analyses des sels nutritifs dans l’eau de mer: Utilisation de l’Autoanalyser II Technicon, 2nd edn. Université de Bretagne Occidentale, BrestGoogle Scholar
  93. Ulses C, Grenz C, Marsaleix P, Schaaff E, Estournel C, Meulé S, Pinazo C (2005) Circulation in a semi-enclosed bay under influence of strong freshwater input. J Mar Syst 56:113–132CrossRefGoogle Scholar
  94. Vaquer A, Heurteaux P (1989) Modifications récentes de la végétation aquatique de l’étang du Vaccarès (Camargue, France) liées aux perturbations anthropiques. Ann Limnol 25:25–38CrossRefGoogle Scholar
  95. Weishaar JL, Aiken GR, Bergamaschi BA, Fram MS, Fujii R, Mopper K (2003) Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ Sci Technol 37:4702–4708CrossRefGoogle Scholar
  96. Welschmeyer NA (1994) Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnol Ocean 39:1985–1992CrossRefGoogle Scholar
  97. Yamashita Y, Cory RM, Nishioka J, Kuma K, Tanoue E, Jaffé R (2010) Fluorescence characteristics of dissolved organic matter in the deep waters of the Okhotsk Sea and the northwestern North Pacific Ocean. Deep-Sea Res Pt II 57:1478–1485CrossRefGoogle Scholar
  98. Yamashita Y, Panton A, Mahaffey C, Jaffé R (2011) Assessing the spatial and temporal variability of dissolved organic matter in Liverpool Bay using excitation–emission matrix fluorescence and parallel factor analysis. Ocean Dyn 61:569–579CrossRefGoogle Scholar
  99. Yamashita Y, Tanoue E (2004) In situ production of chromophoric dissolved organic matter in coastal environments. Geophys Res Lett 31:1–4. doi: 10.1029/2004GL019734 CrossRefGoogle Scholar
  100. Yao X, Zhang Y, Zhu G, Qin B, Feng L, Cai L, Gao G (2011) Resolving the variability of CDOM fluorescence to differentiate the sources and fate of DOM in Lake Taihu and its tributaries. Chemosphere 82:145–155CrossRefGoogle Scholar
  101. Zhang Y, Zhang E, Yin Y, Dijk MA, Van Feng L, Shi Z (2010) Characteristics and sources of chromophoric dissolved organic matter in lakes of the Yungui plateau, China, differing in trophic state and altitude. Limnol Oceanogr 55:2645–2659CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Nicolas Ferretto
    • 1
  • Marc Tedetti
    • 1
  • Catherine Guigue
    • 1
  • Stéphane Mounier
    • 2
  • Patrick Raimbault
    • 1
  • Madeleine Goutx
    • 1
  1. 1.Aix Marseille Université, CNRS/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO)MarseilleFrance
  2. 2.Laboratoire PROTEEUniversité de ToulonLa Garde CedexFrance

Personalised recommendations