Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Long-term impact of reduced tillage on water and pesticide flow in a drained context

  • 1859 Accesses

  • 6 Citations


Influence of more than 20 years (1988–2010) of reduced tillage (RT) practices on water and pesticide balances and dynamics is analyzed and compared to results from a conventional tillage plot (CT). The field study soils are described as silty clay stagnic luvisol, developed on a low permeable schist layer. A drainage network was set up according to French criteria (0.9 m deep, 10 m space) to avoid soil winter waterlogging. Climate is temperate oceanic and drainage generally occurs from November to March. Data were analyzed at yearly, weekly (pesticides) and hourly (water) time steps. Over the long term, cumulated drainage decreases significantly on RT (3999 mm) compared to CT (5100 mm). This differentiation becomes significant from 1999, 10 years after plowing was stopped. Strikingly, hourly drainage peak flows are higher under RT, especially during the second period (2000–2010), associated with low or no base flow. These results suggest a strong influence of the macropore network under RT practice. In particular, drainage peaks are higher at the beginning of the drainage season (mid-October to December). Consistently, pesticides applied in late autumn, which are the most quantified on this site, are often significantly more exported under RT. For atrazine, applied in spring, fluxes are linked to cumulative flow and are de facto higher under CT. For others pesticides, losses appear to be heterogeneous, with generally low or null export rates for spring application. Generally speaking, higher concentrations are measured on RT plot and explain observed exportation rate differences. Finally, there is no clear evidence of correlation between pesticide losses and long-term impacts of RT on hydrodynamics, pointing the importance of studying the short-term effect of tillage on water and especially solute flow.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.


  1. Adamiade C V (2004) Influence d’un fossé sur les écoulements rapides au sein d’un bassin versant. Application au transfert des produits phytosanitasires, Université Paris VI

  2. Agreste (2004) Enquête sur les pratiques culturales en 2001. Chiffres et données : 286

  3. Agreste (2014) Enquête pratiques culturales en 2011, principaux résultats: 70

  4. Ahuja LR, Fielder F, Dunn GH, Benjamin JG, Garisson A (1998) Changes in soil water retention curves due to tillage and natural reconsolidation. Soil science society of America 62:1228–1233

  5. Alletto L (2007) Dynamique de l’eau et dissipation de l’isoxaflutole et du dicétonitrile en monoculture de maïs irrigué : effets du mode du travail du sol et de l’interculture

  6. Alletto L, Coquet Y, Benoit P, Heddadj D and Barriuso E (2010a) Tillage management effects on pesticide fate in soils. a review. Agronomy for sustainable development 30(2)

  7. Alletto L, Coquet Y, Roger-Estrade J (2010b) Two-dimensional spatial variation of soil physical properties in two tillage systems. Soil use and management 26(4)

  8. Arlot MP (1999) Nitrate dans les eaux: drainage acteur, drainage témoin? Les enseignements d’une approche hydrologie et hydraulique. Université Pierre et Marie Curie, Paris, pp 446

  9. Barzman M, Bàrberi P, Birch ANE, Boonekamp P, Dachbrodt-Saaydeh S, Graf B, Hommel B, Jensen JE, Kiss J, Kudsk P, Lamichhane JR, Messéan A, Moonen A-C, Ratnadass A, Ricci P, Sarah J-L, Sattin M (2015) Eight principles of integrated pest management. Agron Sustain Dev 35(4):0

  10. Blouin M, Hodson ME, Delgado EA, Baker G, Brussaard L, Butt KR, Dai J, Dendooven L, Peres G, Tondoh JE, Cluzeau D, Brun JJ (2013) A review of earthworm impact on soil function and ecosystem services. Eur J Soil Sci 64(2):161–182

  11. Brown CD, Hollis JM, Bettinson RJ, Walker A (2000) Leaching of pesticides and a bromide tracer through lysimeters from five contrasting soils. Pest Manag Sci 56(1):83–93

  12. Chenu C, Le Bissonnais Y, Arrouays D (2000) Organic matter influence on clay wettability and soil aggregate stability. Soil Sci Soc Am J 64(4):1479–1486

  13. Coquet Y, Coutadeur C, Labat C, Vachier P, van Genuchten T, Roger-Estrade J, Simunek J (2005a) Water and solute transport in a cultivated silt loam soil: 1. Field observations. Vadose Zone J 4(3):573–586

  14. Coquet Y, Simunek J, Coutadeur C, van Genuchten MT, Pot V, Roger-Estrade J (2005b) Water and solute transport in a cultivated silt loam soil: 2. Numerical analysis. Vadose Zone J 4(3):587–601

  15. FAO (2006) Guidelines for soil description. Food and Agriculture Organization of the United Nations, Rome, p. 110

  16. Flury M (1996) Experimental evidence of transport of pesticides through field soils—a review. J Environ Qual 25(1):25–45

  17. FOCUS (2002) Report of the FOCUS Working Group on Surface Water Scenarios, EU Document Reference SANCO/4802/2002. (rev1): 222

  18. Fortin J, Gagnon-Bertrand E, Vezina L, Rompre M (2002) Preferential bromide and pesticide movement to tile drains under different cropping practices. J Environ Qual 31(6):1940–1952

  19. Gaynor JD, Mactavish DC, Findlay WI (1992) Surface and subsurface transport of atrazine and alachlor from a Brookston clay loam under continuous corn production. Arch Environ Contam Toxicol 23(2):240–245

  20. Gaynor JD, Tan CS, Drury CF, Ng HYF, Welacky TW, van Wesenbeeck IJ (2001) Tillage, intercrop, and controlled drainage-subirrigation influence atrazine, metribuzin, and metolachlor loss. J Environ Qual 30(2):561–572

  21. Giuliano S, Ryan MR, Vericel G, Rametti G, Perdrieux F, Justes E, Alletto L (2016) Low-input cropping systems to reduce input dependency and environmental impacts in maize production: a multi-criteria assessment. Eur J Agron 76:160–175

  22. Gupta SC, Lowery B, Moncrief JF, Larson WE (1991) Modeling tillage effects on soil physical properties. Soil Tillage Res 20(2–4):293–318

  23. Hall JK, Mumma RO (1994) Dicamba mobility in conventionally tilled and non-tilled soil. Soil Tillage Res 30(1):3–17

  24. Hall JK, Murray MR, Hartwig NL (1989) Herbicide leaching and distribution in tilled and untilled soil. J Environ Qual 18(4):439–445

  25. Heddadj D, Cloarec M (2010) Impacts des pratiques culturales sans labour sur le fonctionnement biophysique des sols. Options méditerranéennes 96(IV)

  26. Jarvis NJ (2007) A review of non-equilibrium water flow and solute transport in soil macropores: principles, controlling factors and consequences for water quality. Eur J Soil Sci 58(3):523–546

  27. Javelle P, Ouarda TBMJ, Lang M, Bobee B, Galea G, Gresillon JM (2002) Development of regional flood-duration-frequency curves based on the index-flood method. J Hydrol 258(1–4):249–259

  28. Kalita PK, Algoazany AS, Mitchell JK, Cooke RAC, Hirschi MC (2006) Subsurface water quality from a flat tile-drained watershed in Illinois, USA. Agric Ecosyst Environ 115(1–4):183–193

  29. Kladivko EJ, Turco RF, Mengel DB, Hickman M, Eigel JD (1995) Seasonal variation of pesticide and nitrate movement into tile drains. Clean water—clean environment—21st century: team agriculture—working to protect water resources. Volume 1: pesticides. Proceedings Kansas City, Missouri, USA, 5–8 March, 1995., American Society of Agricultural Engineers (ASAE): 109–112

  30. Kladivko EJ, Grochulska J, Turco RF, Van Scoyoc GE, Eigel JD (1999) Pesticide and nitrate transport into subsurface tile drains of different spacings. J Environ Qual 28(3):997–1004

  31. Kladivko EJ, Brown LC, Baker JL (2001) Pesticide transport to subsurface tile drains in humid regions of North America. Crit Rev Environ Sci Technol 31(1):1–62

  32. Kohne JM, Kohne S, Mohanty BP, Simunek J (2004) Inverse mobile-immobile modeling of transport during transient flow: effects of between-domain transfer and initial water content. Vadose Zone J 3(4):1309–1321

  33. Labreuche J, C Le Souder, Castillon P, Ouvry JF, Real B, Germon JC, Tourdonnet S (2007) Evaluation des impacts environnementaux des Techniques Culturales Sans Labour en France, ADEME-Institut du végétal-INRA-APCA-AREAS-ITB-CETIOM-IFVV: 400

  34. Lindahl A (2009) Sources of pesticide losses to surface waters and groundwater at field and landscape scales. Swedish University of Agricultural Sciences, Department of Soil and Environment, Uppsala

  35. Lindahl AML, Dubus IG, Jarvis NJ (2009) Site classification to predict the abundance of the deep-burrowing earthworm Lumbricus terrestris L. Vadose Zone J 8(4):911–915

  36. Logan TJ, Eckert DJ, Beak DG (1994) Tillage, crop and climatic effects on runoff and tile drainage losses of nitrate and 4 herbicides. Soil Tillage Res 30(1):75–103

  37. Masse L, Patni NK, Jui PY, Clegg BS (1996) Tile effluent quality and chemical losses under conventional and no tillage .2. Atrazine and metolachlor. Transactions of the Asae 39(5):1673–1679

  38. Patni NK, Masse L, Jui PY, Clegg BS (1994) Fate of agricultural chemicals in soil, ground water and agricultural drainage water under farm conditions. Ottawa, Canada, Centre for food and Animal research, agriculture and Agri-Food Canada: 32

  39. Patty L (1997) Limite du transfert par ruissellement vers les eaux superficielles de deux herbicides (isoproturon et diflufénicanil). Méthodologie analytique et étude de l’éfficacité de bande enherbées., Joseph fourier

  40. Schwen A, Bodner G, Scholl P, Buchan GD, Loiskandl W (2011) Temporal dynamics of soil hydraulic properties and the water-conducting porosity under different tillage. Soil Tillage Res 113(2):89–98

  41. Sillon JF, Richard G, Cousin I (2003) Tillage and traffic effects on soil hydraulic properties and evaporation. Geoderma 116(1–2):29–46

  42. Strudley MW, Green TR, Ascough JC (2008) Tillage effects on soil hydraulic properties in space and time: state of the science. Soil Tillage Res 99(1):4–48

  43. Tan CS, Drury CF, Gaynor JD, Welacky TW (1993) Integrated soil, crop and water management-system to abate herbicide and nitrate contamination of the Great-Lakes. Water Sci Technol 28(3–5):497–507

  44. Ulen BM, Larsbo M, Kreuger JK, Svanback A (2014) Spatial variation in herbicide leaching from a marine clay soil via subsurface drains. Pest Manag Sci 70(3):405–414

  45. Unger PW (1991) Organic matter, nutrient, and pH distribution in no-and conventional-tillage semiarid soils. J Agron 83:186–189

  46. Von Stryk FG, Bolton EF (1997) Atrazine residues in tile-drain-water from corn plots as affected by cropping practices and fertility levels. Can J Soil Sci 57:249–253

  47. Watts CD, Hall JK (1996) Tillage and application effects on herbicide leaching and runoff. Soil Tillage Res 39:241–257

  48. Watts DW, Hall JK (2000) Effects of conventional and mulch tillage on Dicamba transport. Weed Technol 14(1):94–99

  49. Wauchope RD (1978) The pesticide content of surface water drained from agricultural fields—a review. J Environ Qual 7(4):459–473

  50. Weber JB, Taylor KA, Wilkerson GG (2006) Soil cover and tillage influenced metolachlor mobility and dissipation in field lysimeters. Agron J 98(1):19–25

  51. Weed DAJ, Kanwar RS, Stoltenberg DE, Pfeiffer RL (1995) Dissipation and distribution of herbicides in the soil-profile. J Environ Qual 24(1):68–79

Download references


The authors wish to thank the support of ARVALIS-Institut du végétal for providing data acquired by the Institute on its experimental site.

Author information

Correspondence to R. Dairon.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dairon, R., Dutertre, A., Tournebize, J. et al. Long-term impact of reduced tillage on water and pesticide flow in a drained context. Environ Sci Pollut Res 24, 6866–6877 (2017). https://doi.org/10.1007/s11356-016-8123-x

Download citation


  • Conventional tillage/no tillage
  • Hourly drained flow dynamic
  • Pesticide losses
  • Long-term study
  • Macroporosity