Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Rapid in situ toxicity testing with luminescent bacteria Photorhabdus luminescens and Vibrio fischeri adapted to a small portable luminometer

  • 459 Accesses

  • 3 Citations


The present study demonstrates development of a rapid testing protocol based on a small portable luminometer using flash kinetic assessment of bacterial bioluminescence. The laboratory comparisons based on six model organic toxicants and two metals showed significant correlations between responses of freshwater bacteria Photorhabdus luminescens and standard marine bacterial species Vibrio fisheri. While P. luminescens was less sensitive in standard arrangements, the responses of both organisms were comparable in the newly introduced portable luminometer setup. The applicability and reproducibility of the portable luminometer protocol was further demonstrated in the assessment of 43 European wastewater effluents that were simultaneously tested for toxicity and analysed for 150 organic and 20 inorganic contaminants grouped into 13 major chemical classes. Clear association between the toxic responses in both compared bacterial species and the elevated levels of inorganic compounds (toxic metals), chlorophenols and benzotriazole anticorrosives was observed. The new protocol with a portable luminometer provides a fast (30 s) response and may be used as a tool for rapid in situ toxicity evaluation of freshwater environmental samples such as effluents.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2


  1. Beesley L, Moreno-Jiménez E, Gomez-Eyles JL (2010) Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environ Pollut 158(6):2282–2287

  2. Berglind R, Leffler P, Sjöström M (2010) Interactions between pH, potassium, calcium, bromide, and phenol and their effects on the bioluminescence of Vibrio fischeri. J Toxic Environ Health A 73(16):1102–1112

  3. Bláha L, Hilscherová K, Čáp T, Klánová J, Machát J, Zeman J, Holoubek I (2010) Kinetic bacterial bioluminescence assay for contact sediment toxicity testing: relationships with the matrix composition and contamination. Environ Toxicol Chem 29(3):507–514

  4. Campisi T, Abbondanzi F, Casado-Martinez C, DelValls TA, Guerra R, Iacondini A (2005) Effect of sediment turbidity and color on light output measurement for microtox basic solid-phase test. Chemosphere 60(1):9–15

  5. Chapman PM (2000) Whole effluent toxicity testing—usefulness, level of protection, and risk assessment. Environ Toxicol Chem 19:3–13

  6. Cook SV, Chu A, Goodman RH (2000) Influence of salinity on Vibrio fischeri and lux-modified Pseudomonas fluorescens toxicity bioassays. Environ Toxicol Chem 19(10):2474–2477

  7. Deblonde T, Cossu-Leguille C, Hartemann P (2011) Emerging pollutants in wastewater: a review of the literature. Int J Hyg Environ Health 214(6):442–448

  8. Deheyn DD, Bencheikh-Latmani R, Latz MI (2004) Chemical speciation and toxicity of metals assessed by three bioluminescence-based assays using marine organisms. Environ Toxicol 19(3):161–178

  9. Diamond J, Daley C (2000) What is the relationship between whole effluent toxicity and instream biological condition? Environ Toxicol Chem 19(1):158–168

  10. Directive 2000/60/ES, 2000. Directive 2000/60/EC of the European Parliament and of the Council establishing a framework for Community action in the field of water policy

  11. Directive 2008/105/EC, 2008. DIRECTIVE 2008/105/EC of The European Parliament and of the Council on environmental quality standards in the field of water policy

  12. Dizer H, Wittekindt E, Fischer B, Hansen P-D (2002) The cytotoxic and genotoxic potential of surface water and wastewater effluents as determined by bioluminescence, umu-assays and selected biomarkers. Chemosphere 46(2):225–233

  13. Dunlap PV (1985) Osmotic control of luminescence and growth in Photobacterium leiognathi from ponyfish light organs. Microbiology 141(1):44–50

  14. Escher BI et al (2014) Benchmarking organic micropollutants in wastewater, recycled water and drinking water with in vitro bioassays. Environ Sci Technol 48(3):1940–1956

  15. Escher BI, van Daele C, Dutt M, Tang JYM, Altenburger R (2013) Most oxidative stress response in water samples comes from unknown chemicals: the need for effect-based water quality trigger values. Environ Sci Technol 47(13):7002–7011

  16. Farré M et al (2006) European ring exercise on water toxicity using different bioluminescence inhibition tests based on Vibrio fischeri, in support to the implementation of the water framework directive. Talanta 69(2):323–333

  17. Farré M, Barceló D (2003) Toxicity testing of wastewater and sewage sludge by biosensors, bioassays and chemical analysis. TrAC Trends Anal Chem 22(5):299–310

  18. Heberer T (2002) Tracking persistent pharmaceutical residues from municipal sewage to drinking water. J Hydrol 266(3–4):175–189

  19. Huybrechts D, Weltens R, Jacobs G, Borburgh A, Smets T, Hoebeke L, Polders C (2014) The relevance of physicochemical and biological parameters for setting emission limit values for plants treating complex industrial wastewaters. Environ Sci Pollut Res 21(4):2805–2816

  20. ISO 11348-3, I., 2009. Water quality—determination of the inhibitory effect of water samples on the light emission of Vibrio fischeri (luminescent bacteria test)—part 3: method using freeze-dried bacteria. ISO 11348-3, 2009

  21. ISO 21338:2010, 2010. Water quality—kinetic determination of the inhibitory effects of sediment, other solids and coloured samples on the light emission of Vibrio fischeri (kinetic luminescent bacteria test), 2010

  22. Jarošová B, Erséková A, Hilscherová K, Loos R, Gawlik B, Giesy J, Bláha L (2014) Europe-wide survey of estrogenicity in wastewater treatment plant effluents: the need for the effect-based monitoring. Environ Sci Pollut Res 21(18):10970–10982

  23. Jennings VL, Rayner-Brandes MH, Bird DJ (2001) Assessing chemical toxicity with the bioluminescent photobacterium (Vibrio fischeri): a comparison of three commercial systems. Water Res 35(14):3448–3356

  24. Kaiser KL (1998) Correlations of Vibrio fischeri bacteria test data with bioassay data for other organisms. Environmental Health Perspectives 106 Suppl(April):583–591

  25. Kováts N, Rafaey M, Eck-Varanka B, Acs A (2012) Comparison of conventional and Vibrio fischeri bioassays for the assessment of municipal wastewater toxicity. Environ Eng Manag J 11(11):2073–2076

  26. Kumar KS, Dams H-U, Lee J-S, Kim HC, Lee WC, Shin K-H (2014) Algal photosynthetic responses to toxic metals and herbicides assessed by chlorophyll a fluorescence. Ecotoxicol Environ Saf 104:51–71

  27. Kurvet I, Ivask A, Bondarenko O, Sihtmae M, Kahru A (2011) LuxCDABE-transformed constitutively bioluminescent Escherichia coli for toxicity screening: comparison with naturally luminous Vibrio fischeri. Sensors 11:7865–7878

  28. Lappalainen J, Juvonen R, Vaajassari K, Karp M (1999) A new flash method for measuring the toxicity of solid and coloured samples. Chemosphere 38(5):1069–1083

  29. Lappalainen J, Juvonen R, Nurmi J, Karp M (2001) Automated color correction method for Vibrio fischeri toxicity test. Comparison of standard and kinetic assays. Chemosphere 45(4–5):635–641

  30. Loos R, Carvalho R, Comero S, Conduto D, Ghiani M, Lettieri T, Locoro G, Paracchini B, Tavazzi S, Gawlik BM, Schwesig D, Haglund T, Fick J, Jarosova B, Blaha L, Voerspools S, Gans O (2012) EU wide monitoring survey on waste water treatment plant effluents. JRC scientific and policy report 138. doi:10.2788/60663

  31. Loos R, Carvalho R, António DC, Comero S, Locoro G, Tavazzi S, Paracchini G, Ghiani M, Lettieri T, Blaha L, Jarosova B, Voerspools S, Servaes K, Haglund T, Fick J, Lindberg RH, Schwesig D, Gawlik BM (2013) EU-wide monitoring survey on emerging polar organic contaminants in wastewater treatment plant effluents. Water Res 47(17):6475–6487

  32. Ma M, Tong Z, Wang Z, Zhu W (1999) Acute toxicity bioassay using the freshwater luminescent bacterium Vibrio qinghaiensis sp. Nov. Q67. Bull Environ Contam Toxicol 62(3):247–253

  33. Mendonça E et al (2009) Ecotoxicity tests in the environmental analysis of wastewater treatment plants: case study in Portugal. J Hazard Mater 163(2–3):665–670

  34. Muller R, Schreiber U, Escher BI, Quayle P, Bengtson Nash SM, Mueller JF (2008) Rapid exposure assessment of PSII herbicides in surface water using a novel chlorophyll a fluorescence imaging assay. Sci Total Environ 401(1–3):51–59

  35. Nohava M, Vogel WR, Gaugitsch H (1995) Evaluation of the luminescent bacteria bioassay for the estimation of the toxicological potential of effluent water samples—comparison with data from chemical analyses. Environ Int 21(1):33–37

  36. Pandard P, Devillers J, Charissou AM, Poulsen V, Jourdain MJ, Férard JF, Grand C, Bispo A (2006) Selecting a battery of bioassays for ecotoxicological characterization of wastes. Sci Total Environ 363(1–3):114–125

  37. Pessala P, Schultz E, Nakari T, Joutti A, Herve S (2004) Evaluation of wastewater effluents by small-scale biotests and a fractionation procedure. Ecotoxicol Environ Saf 59(2):263–272

  38. Rodriguez-Ruiz A, Etxebarria J, Boatti L, Marigomez I (2015) Scenario-targeted toxicity assessment through multiple endpoint bioassays in a soil posing unacceptable environmental risk according to regulatory screening values. Environ Sci Pollut Res 22(17):13344–13361

  39. Rosal R, Rodea-Palomares I, Boltes K, Fernández-Piñas F, Leganés F, Gonzalo S, Petre A (2010) Ecotoxicity assessment of lipid regulators in water and biologically treated wastewater using three aquatic organisms. Environ Sci Pollut Res 17(1):135–144

  40. Rüdel H, Díaz Muñiz C, Garelick H et al (2015) Consideration of the bioavailability of metal/metalloid species in freshwaters: experiences regarding the implementation of biotic ligand model-based approaches in risk assessment frameworks. Environ Sci Pollut Res 22:7405–7421

  41. Schmitz RPH, Kretkowski C, Eisentrager A, Dott W (1999) Ecotoxicological testing with new kinetic Photorhabdus luminescens growth and luminescence inhibition assays in microtitration scale. Chemosphere 38(1):67–78

  42. Schulze T, Ulrich M, Maier D et al (2015) Evaluation of the hazard potentials of river suspended particulate matter and floodplain soils in the Rhine basin using chemical analysis and in vitro bioassays. Environ Sci Pollut Res 22(19):14606–14620

  43. Stewart SAB, Williams P (1992) Lux genes and the applications of bacterial bioluminescence. J Gen Microbiol 138(7):1289–1300

  44. Tabei Y, Ogawa A, Era M, Ninomiya J, Morita H (2013) Influence of cations and anions on the induction of cell density-independent luminescence in Photorhabdus luminescens. J Basic Microbiol 53(3):268–276

  45. Thavamani P, Megharaj M, Naidu R (2015) Metal-tolerant PAH-degrading bacteria: development of suitable test medium and effect of cadmium and its availability on PAH biodegradation. Environ Sci Pollut Res 22(12):8957–8968

  46. Thomas GM, Poinar GO (1979) Xenorhabdus gen. Nov., a genus of entomopathogenic, nematophilic bacteria of the family Enterobacteriaceae. Int J Syst Bacteriol 29(4):352–360

  47. Urbanczyk H, Ast JC, Higgins MJ, Carson J, Dunlap PV (2007) Reclassification of Vibrio fischeri, Vibrio logei, Vibrio salmonicida and Vibrio wodanis as Aliivibrio fischeri gen. nov., comb. nov., Aliivibrio logei comb. nov., Aliivibrio salmonicida comb. nov and Aliivibrio wodanis comb. nov. Int J Sys Evol Micr 57:2823–2829

  48. van Assche F, Clijsters H (1990) Effects of metals on enzyme activity in plants. Plant Cell Environ 13(3):195–206

  49. Volpi Ghirardini A, Girardini M, Marchetto D, Pantani C (2009) Microtox solid phase test: effect of diluent used in toxicity test. Ecotoxicol Environ Saf 72(3):851–861

  50. Wernersson A-S et al (2015) The European technical report on aquatic effect-based monitoring tools under the water framework directive. Environ Sci Eur 27(1):7. doi:10.1186/s12302-015-0039-4

  51. Wolska L, Sagajdakow A, Kuczynska A, Namiesnik J (2007) Application of ecotoxicological studies in integrated environmental monitoring: possibilities and problems. TrAC Trends Anal Chem 26(4):332–344

  52. Zhao YH, Cronin MTD, Dearden JC (1998) Quantitative structure—activity relationships of chemicals acting by non-polar narcosis—theoretical considerations. Mol Inform 17:131–138

Download references


The research was supported by the Czech Ministry of Education grants LO1214 and CETOCOEN UPgrade (CZ.1.05/2.1.00/19.0382). The authors would like to acknowledge the assistance of Mr. Christopher Culver for English proofreading.

Author information

Correspondence to Luděk Bláha.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

Supplementary Figure 1

Scheme of modified portable luminometer (DOCX 58 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Masner, P., Javůrková, B. & Bláha, L. Rapid in situ toxicity testing with luminescent bacteria Photorhabdus luminescens and Vibrio fischeri adapted to a small portable luminometer. Environ Sci Pollut Res 24, 3748–3758 (2017). https://doi.org/10.1007/s11356-016-8096-9

Download citation


  • Photorhabdus luminescens
  • Vibrio fisheri
  • Whole effluent testing (WET)
  • In situ testing
  • Portable biotest