Advertisement

Environmental Science and Pollution Research

, Volume 24, Issue 4, pp 3352–3362 | Cite as

Long-term 2007–2013 monitoring of reproductive disturbance in the dun sentinel Assiminea grayana with regard to polymeric materials pollution at the coast of Lower Saxony, North Sea, Germany

  • B. T. WatermannEmail author
  • M. Löder
  • M. Herlyn
  • B. Daehne
  • A. Thomsen
  • K . GallEmail author
Research Article

Abstract

During biological effect monitoring studies of endocrine active compounds with the snail Assiminea grayana in 2007–2013, reproductive disorders including atresia, transformation of capsule/albumen glands into prostates in females and ovotestis, transformation of prostates to capsule/albumen glands, disruption of spermatogenesis, and calcification of tubules in males, were encountered in several years. The search of sources of endocrine active substances was first directed to antifouling biocides from paint particles and extended to leaching compounds from polymeric materials. In contrast to the reference sites, most of the observed disorders occurred at a station near harbors and dockyards polluted with residues from antifouling paints and polymeric materials. Beside of investigations about the potential ingestion of polymer particles by the snails, further investigations of compounds of polymeric materials with endocrine potential should follow.

Keywords

Assiminea grayana Snails Reproductive disorder Antifouling biocides Microplastics Paint flakes 

Notes

Acknowledgments

The study was funded by the Lower Saxony Water Management, Coastal Defense and Nature Conservation Agency.

References

  1. Abbott RT (1958) The gastropod genus Assiminea in the Philippines. Proc Acad Nat Sci Philadelphia 110:213–278Google Scholar
  2. Anderson A, Andrady A, Arthur C, Baker J, Bouwman H, Gall S, Hidalgo-Ruz V, Köhler A, Law KL, Leslie H, Kershaw P, Pahl S, Potemra J, Ryan P, Shim WJ, Thompson R, Takada H, Turra A, Vethaak D, Wyles K (2015) Sources, fate and effects of microplastics in the marine environment: a global assessment. GESAMP Rep Stud (90). https://www.researchgate.net/publication/275638703_SOURCES_FATE_AND_EFFECTS_OF_MICROPLASTICS_IN_THE_MARINE_ENVIRONMENT_A_GLOBAL_ASSESSMEGoogle Scholar
  3. Ankel WE (1926) Prosobranchia. In: Grimpe G, Wagner E (eds) Die Tierwelt der Nord-und Ostsee. Akademische Verlagsgesellschaft, LeipzigGoogle Scholar
  4. Barnes DKA, Galgani F, Thompson RC, Barlaz M (2009) Accumulation and fragmentation of plastic debris in global environments. Philos Trans R Soc Lond Ser B Biol Sci 364(1526):1985–1998. doi: 10.1098/rstb.2008.0205 CrossRefGoogle Scholar
  5. Bauer B, Fioroni P, Ide I, Liebe S, Oehlmann J, Stroben E, Watermann B (1995) TBT effects on the female genital system of Littorina littorea: a possible indicator of tributyltin pollution. Hydrobiologia 309(1):15–27. doi: 10.1007/BF00014468 CrossRefGoogle Scholar
  6. Browne MA, Dissanayake A, Galloway TS, Lowe DM, Thompson RC (2008) Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L.). Environ Sci Technol 42(13):5026–5031CrossRefGoogle Scholar
  7. Bruyndoncx L, Jordaens K, Ysebaert T, Meire P, Backeljau T (2002) Molluscan diversity in tidal marshes along the Scheldt estuary (The Netherlands, Belgium). Hydrobiologia 474(1):189–196. doi: 10.1023/A:1016539905812 CrossRefGoogle Scholar
  8. Dekiff JH, Remy D, Klasmeier J, Fries E (2014) Occurrence and spatial distribution of microplastics in sediments from Norderney. Environ Pollut 186:248–256. doi: 10.1016/j.envpol.2013.11.019 CrossRefGoogle Scholar
  9. EG-WRRL (2015) Verordnung zum Schutz der Oberflächengewässer (Oberflächengewässerverordnung-OGewV), Anlage 8Google Scholar
  10. Falandysz J, Albanis T, Bachmann J, Bettinetti R, Bochentin I, Boti V, Bristeau S, Daehne B, Dagnac T, Galassi S, Jeannot R, Oehlmann J, Orlikowska A, Sakkas V, Szczerski R, Valsamaki V, Schulte-Oehlmann U (2006) Some chemical contaminant of surface sediments at the Baltic Sea coastal region with special emphasis on androgenic and anti-androgenic compounds. J Environ Sci Health A Tox Hazard Subst Environ Eng 41(10):2127–2162. doi: 10.1080/10934520600872433 CrossRefGoogle Scholar
  11. FGG Elbe (2013) Sedimentmanagementkonzept der FGG Elbe-Vorschläge für eine gute Sedimentmanagementpraxis im Elbegebiet zur Erreichung überregionaler Handlungsziele. Flussgebietsgemeinschaft Elbe, MagdeburgGoogle Scholar
  12. Fortuin AW, de Wolf L, Borghouts-Biersteker CH (1981) The population structure of Assiminea grayana Fleming, 1828 (Gastropoda, Assimineidae), in the South-West Netherlands. Basteria 45:73–78Google Scholar
  13. Fukuda H, Ponder WF (2005) Conassiminea, a new genus of the Assimineidae (Caenogastropoda: Rissooidea) from Southeastern Australia. J Molluscan Stud 72(1):39–52. doi: 10.1093/mollus/eyi053 CrossRefGoogle Scholar
  14. Glöer P (2002) 73. Teil: Mollusca I; Süßwassergastropoden Nord- und Mitteleuropas. Bestimmungsschlüssel, Lebensweise, Verbreitung, 2., neubearb. Aufl. Die Tierwelt Deutschlands und der angrenzenden Meeresteile nach ihren Merkmalen und nach ihrer Lebensweise/Begründet 1925 von Friedrich Dahl. Conchbooks, HackenheimGoogle Scholar
  15. Grotjahn M (2009) Durchgängigkeit im Südstrandpolder auf Norwderney. NLWKN UntersuchungsberichtGoogle Scholar
  16. Käppler A, Windrich F, Löder MGJ, Malanin M, Fischer D, Labrenz M, Eichhorn K, Voit B (2015) Identification of microplastics by FTIR and Raman microscopy: a novel silicon filter substrate opens the important spectral range below 1300 cm(−1) for FTIR transmission measurements. Anal Bioanal Chem 407(22):6791–6801. doi: 10.1007/s00216-015-8850-8 CrossRefGoogle Scholar
  17. Kilias R, Cosel R (eds) (1997) Lexikon Marine Muscheln und Schnecken. Ulmer, StuttgartGoogle Scholar
  18. Löder MGJ, Kuczera M, Mintenig S, Lorenz C, Gerdts G (2015) Focal plane array detector-based micro-Fourier-transform infrared imaging for the analysis of microplastics in environmental samples. Environ Chem 12(5):563. doi: 10.1071/EN14205 CrossRefGoogle Scholar
  19. Mulisch M, Welsch U (eds) (2015) Romeis-Mikroskopische Technik, 19. Auflage. Springer Berlin Heidelberg, Berlin, HeidelbergGoogle Scholar
  20. Oberbeckmann S, Löder MGJ, Labrenz M (2015) Marine microplastic-associated biofilms—a review. Environ Chem 12(5):551. doi: 10.1071/EN15069 CrossRefGoogle Scholar
  21. Oehlmann J, Schulte-Oehlmann U, Tillmann M, Markert B (2000) Effects of endocrine disruptors on prosobranch snails (Mollusca: Gastropoda) in the laboratory. Part I: bisphenol A and octylphenol as xeno-estrogens. Ecotoxicology 9(6):383–397CrossRefGoogle Scholar
  22. Oehlmann J, Schulte-Oehlmann U, Bachmann J, Oetken M, Lutz I, Kloas W, Ternes TA (2005) Bisphenol A induces superfeminization in the ramshorn snail (Gastropoda: Prosobranchia) at environmentally relevant concentrations. Environ Health Perspect 114(S-1):127–133. doi: 10.1289/ehp.8065 CrossRefGoogle Scholar
  23. Oehlmann J, Schulte-Oehlmann U, Kloas W, Jagnytsch O, Lutz I, Kusk KO, Wollenberger L, Santos EM, Paull GC, Look V, Katrien JW, Tyler CR (2009) A critical analysis of the biological impacts of plasticizers on wildlife. Philos Trans R Soc Lond Ser B Biol Sci 364(1526):2047–2062. doi: 10.1098/rstb.2008.0242 CrossRefGoogle Scholar
  24. Remane A (1934) Die Brackwasserfauna. Verhandlungen der Deutschen Zoologischen Gesellschaft 36:34–74Google Scholar
  25. Sander K (1950) Beobachtungen zur Fortpflanzung von Assiminea grayana Leach. Arch Moll 79:147–149Google Scholar
  26. Sander K (1952) Beobachtungen zur Fortpflanzung von Assiminea grayana Leach. Arch Moll 81:133–134Google Scholar
  27. Schulte-Oehlmann U (1997) Fortpflanzungsstörungen bei Süß-und Brackwasserschnecken: Einfluss der Umweltchemikalie Tributylzinn. Wissenschaft und Technik Verlag, BerlinGoogle Scholar
  28. Stresemann E (1992) Exkursionsfauna von Deutschland. Band 1, Wirbellose, 8. Aufl. Volk und Wissen, BerlinGoogle Scholar
  29. Teuten EL, Rowland SJ, Galloway TS, Thompson RC (2007) Potential for plastics to transport hydrophobic contaminants. Environ Sci Technol 41(22):7759–7764CrossRefGoogle Scholar
  30. Teuten EL, Saquing JM, Knappe DRU, Barlaz MA, Jonsson S, Björn A, Rowland SJ, Thompson RC, Galloway TS, Yamashita R, Ochi D, Watanuki Y, Moore C, Viet PH, Tana TS, Prudente M, Boonyatumanond R, Zakaria MP, Akkhavong K, Ogata Y, Hirai H, Iwasa S, Mizukawa K, Hagino Y, Imamura A, Saha M, Takada H (2009) Transport and release of chemicals from plastics to the environment and to wildlife. Philos Trans R Soc Lond Ser B Biol Sci 364(1526):2027–2045. doi: 10.1098/rstb.2008.0284 CrossRefGoogle Scholar
  31. Wagner M, Oehlmann J (2009) Endocrine disruptors in bottled mineral water: total estrogenic burden and migration from plastic bottles. Environ Sci Pollut Res Int 16(3):278–286. doi: 10.1007/s11356-009-0107-7 CrossRefGoogle Scholar
  32. Wagner M, Scherer C, Alvarez-Muñoz D, Brennholt N, Bourrain X, Buchinger S, Fries E, Grosbois C, Klasmeier J, Marti T, Rodriguez-Mozaz S, Urbatzka R, Vethaak AD, Winther-Nielsen M, Reifferscheid G (2014) Microplastics in freshwater ecosystems: what we know and what we need to know. Environ Sci Eur 26(1):1977. doi: 10.1186/s12302-014-0012-7 Google Scholar
  33. Watermann B, Thomsen A, Kolodzey H, Daehne B, Meemken M, Pijanowska U, Liebezeit G (2008) Histopathological lesions of molluscs in the harbour of Norderney, Lower Saxony, North Sea (Germany). Helgol Mar Res 62(2):167–175. doi: 10.1007/s10152-008-0105-z CrossRefGoogle Scholar
  34. Zhou X, Ge Z, Shi W, Wang T, Cao D, Zhou L (2006) Seasonal fluctuation of macrobenthos community in Jiuduansha intertidal wetland of Yangtze River Estuary. J Appl Ecol 17(11):2079–2083Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.LimnoMarHamburgGermany
  2. 2.Alfred Wegener Institute Centre for Polar and Marine Research (AWI), Biologische Anstalt Helgoland (BAH)HelgolandGermany
  3. 3.Lower Saxony Water Management, Coastal Defence and Nature Conservation AgencyNordenGermany

Personalised recommendations