Environmental Science and Pollution Research

, Volume 24, Issue 4, pp 3664–3674 | Cite as

Biotransformation of herbicides by aquatic microbial communities associated to submerged leaves

  • Louis CarlesEmail author
  • Florent Rossi
  • Muriel Joly
  • Pascale Besse-Hoggan
  • Isabelle Batisson
  • Joan Artigas
Research Article


Leaf microbial communities possess a large panel of enzymes permitting the breakdown of leaf polymers as well as the transformation of organic xenobiotic compounds present in stream waters. This study aims to assess the potential of leaf microbial communities, exhibiting different exposure histories to pesticides (upstream versus downstream), to biotransform three maize herbicides (mesotrione, S-metolachlor, and nicosulfuron) in single and cocktail molecule exposures. The results showed a high dissipation of nicosulfuron (sulfonylurea herbicide) (from 29.1 ± 10.8% to 66 ± 16.2%, day 40) in both single and cocktail exposures, respectively, but not of mesotrione and S-metolachlor. The formation of nicosulfuron metabolites such as ASDM (2-(aminosulfonyl)-N,N-dimethyl-3-pyridinecarboxamide) and ADMP (2-amino-4,6-dimethoxypyrimidine) and the weak sorption (<0.4%) on the leaf matrix confirmed the transformation of this molecule by leaf microorganisms. In addition, the downstream communities showed a greater ability to transform nicosulfuron than the upstream communities suggesting that the exposure history to pesticides is an important parameter and can enhance the biotransformation potential of leaf microorganisms. After 40-day single exposure to nicosulfuron, the downstream communities were also those experiencing the greatest shifts in fungal and bacterial community diversity suggesting a potential adaptation of microorganisms to this herbicide. Our study emphasizes the importance of leaf microbial communities for herbicide biotransformation in polluted stream ecosystems where fungi could play a crucial role.


Leaf-associated microorganisms Biodegradation Mesotrione Nicosulfuron S-metolachlor Herbicide mixture 



This project has been funded by the project EcoBioPest (Agence de l’Eau Loire-Bretagne), the Région Auvergne, the French Ministry for Higher Education and Research and the European Regional Development Fund.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11356_2016_8035_MOESM1_ESM.docx (2.6 mb)
Figure S1 (DOCX 2678 kb)


  1. ADES (2016) Portail national d’accès aux données sur les eaux souterraines. Accessed 8 Feb 2016
  2. Agritox (2016) Base de données sur les substances actives phytopharmaceutiques. Accessed 3 Feb 2016
  3. Alexander M (1994) Growth-linked biodegradation. In: Biodegradation and bioremediation. Academic Press, pp 8–15Google Scholar
  4. Aliferis KA, Materzok S, Paziotou GN, Chrysayi-Tokousbalides M (2009) Lemna minor L. as a model organism for ecotoxicological studies performing 1H NMR fingerprinting. Chemosphere 76:967–973CrossRefGoogle Scholar
  5. Allison SD, Martiny JB (2008) Resistance, resilience, and redundancy in microbial communities. Proc Natl Acad Sci 105:11512–11519CrossRefGoogle Scholar
  6. Amiard-Triquet C, Rainbow PS, Romeo M (2011) Tolerance to environmental contaminants. CRC PressGoogle Scholar
  7. Arthur EL, Anhalt JC, Anderson TA, Coats JR (1997) Enhanced degradation of deethylatrazine in an atrazine-history soil of Iowa 1. J Environ Sci Health Part B 32:599–620CrossRefGoogle Scholar
  8. Artigas J, Romaní AM, Sabater S (2008) Relating nutrient molar ratios of microbial attached communities to organic matter utilization in a forested stream. Fundam Appl Limnol Für Hydrobiol 173:255–264CrossRefGoogle Scholar
  9. Artigas J, Gaudes A, Munoz I et al (2011) Fungal and bacterial colonization of submerged leaf litter in a Mediterranean stream. Int Rev Hydrobiol 96:221–234CrossRefGoogle Scholar
  10. Artigas J, Majerholc J, Foulquier A et al (2012) Effects of the fungicide tebuconazole on microbial capacities for litter breakdown in streams. Aquat Toxicol 122:197–205CrossRefGoogle Scholar
  11. Augustin T, Schlosser D, Baumbach R et al (2006) Biotransformation of 1-naphthol by a strictly aquatic fungus. Curr Microbiol 52:216–220CrossRefGoogle Scholar
  12. Baldrian P (2006) Fungal laccases—occurrence and properties. FEMS Microbiol Rev 30:215–242CrossRefGoogle Scholar
  13. Batisson I, Crouzet O, Besse-Hoggan P et al (2009) Isolation and characterization of mesotrione-degrading Bacillus sp. from soil. Environ Pollut 157:1195–1201CrossRefGoogle Scholar
  14. Battaglin WA, Rice KC, Focazio MJ et al (2009) The occurrence of glyphosate, atrazine, and other pesticides in vernal pools and adjacent streams in Washington, DC, Maryland, Iowa, and Wyoming, 2005–2006. Environ Monit Assess 155:281–307CrossRefGoogle Scholar
  15. Berger BM, Wolfe NL (1996) Hydrolysis and biodegradation of sulfonylurea herbicides in aqueous buffers and anaerobic water-sediment systems: assessing fate pathways using molecular descriptors. Environ Toxicol Chem 15:1500–1507Google Scholar
  16. Cessna AJ, Donald DB, Bailey J, Waiser M (2015) Persistence of the sulfonylurea herbicides sulfosulfuron, rimsulfuron, and nicosulfuron in farm dugouts (ponds). J Environ Qual 44:1948–1955CrossRefGoogle Scholar
  17. Chaabane H, Vulliet E, Calvayrac C et al (2008) Behaviour of sulcotrione and mesotrione in two soils. Pest Manag Sci 64:86–93CrossRefGoogle Scholar
  18. Cook ME, Moore PA (2008) The effects of the herbicide metolachlor on agonistic behavior in the crayfish, Orconectes rusticus. Arch Environ Contam Toxicol 55:94–102CrossRefGoogle Scholar
  19. Davila-Vazquez G, Tinoco R, Pickard MA, Vazquez-Duhalt R (2005) Transformation of halogenated pesticides by versatile peroxidase from Bjerkandera adusta. Enzym Microb Technol 36:223–231CrossRefGoogle Scholar
  20. de Lafontaine Y, Beauvais C, Cessna AJ et al (2014) Sulfonylurea herbicides in an agricultural catchment basin and its adjacent wetland in the St. Lawrence River basin. Sci Total Environ 479:1–10CrossRefGoogle Scholar
  21. de Oliveira TA, dos Santos JB, Camelo GN et al (2009) Effect of sequential nicosulfuron and chlorpyrifos application on seed bank and soil microbial characteristics. Rev Bras Ciênc Solo 33:563–570CrossRefGoogle Scholar
  22. Debenest T, Pinelli E, Coste M et al (2009) Sensitivity of freshwater periphytic diatoms to agricultural herbicides. Aquat Toxicol 93:11–17CrossRefGoogle Scholar
  23. Dopheide A, Lear G, He Z et al (2015) Functional gene composition, diversity and redundancy in microbial stream biofilm communities. PLoS One 10:e0123179CrossRefGoogle Scholar
  24. Durand S, Amato P, Sancelme M et al (2006) First isolation and characterization of a bacterial strain that biotransforms the herbicide mesotrione. Lett Appl Microbiol 43:222–228CrossRefGoogle Scholar
  25. Dyson JS, Beulke S, Brown CD, Lane MCG (2002) Adsorption and degradation of the weak acid mesotrione in soil and environmental fate implications. J Environ Qual 31:613–618CrossRefGoogle Scholar
  26. El-Dib MA, Abou-Waly HF (1998) Biodegradation of some triazines and phenylureas in surface waters. Water Res 32:1881–1887CrossRefGoogle Scholar
  27. Elias D, Bernot MJ (2014) Effects of atrazine, metolachlor, carbaryl and chlorothalonil on benthic microbes and their nutrient dynamics. PLoS One 9:e109190CrossRefGoogle Scholar
  28. Fort DJ, Rogers R, Copley H et al (1999) Effect of sulfometuron methyl and nicosulfuron on development and metamorphosis in Xenopus laevis: impact of purity. Environ Toxicol Chem 18:2934–2940CrossRefGoogle Scholar
  29. Gessner MO, Gulis V, Kuehn KA et al (2007) Fungal decomposers of plant litter in aquatic ecosystems. Environ Microb Relatsh 4:301–324CrossRefGoogle Scholar
  30. Gulis V, Suberkropp K (2003) Effect of inorganic nutrients on relative contributions of fungi and bacteria to carbon flow from submerged decomposing leaf litter. Microb Ecol 45:11–19CrossRefGoogle Scholar
  31. Heuer H, Hartung K, Wieland G et al (1999) Polynucleotide probes that target a hypervariable region of 16S rRNA genes to identify bacterial isolates corresponding to bands of community fingerprints. Appl Environ Microbiol 65:1045–1049Google Scholar
  32. Hieber M, Gessner MO (2002) Contribution of stream detrivores, fungi, and bacteria to leaf breakdown based on biomass estimates. Ecology 83:1026–1038CrossRefGoogle Scholar
  33. Joly P, Besse-Hoggan P, Bonnemoy F et al (2012) Impact of maize formulated herbicides mesotrione and S-metolachlor, applied alone and in mixture, on soil microbial communities. ISRN Ecol 2012:1–9CrossRefGoogle Scholar
  34. Joly P, Bonnemoy F, Charvy J-C et al (2013) Toxicity assessment of the maize herbicides S-metolachlor, benoxacor, mesotrione and nicosulfuron, and their corresponding commercial formulations, alone and in mixtures, using the Microtox® test. Chemosphere 93(10):2444–2450CrossRefGoogle Scholar
  35. Joly P, Misson B, Perrière F et al (2014) Soil surface colonization by phototrophic indigenous organisms, in two contrasted soils treated by formulated maize herbicide mixtures. Ecotoxicology 23:1648–1658CrossRefGoogle Scholar
  36. Joly P, Bonnemoy F, Besse-Hoggan P et al (2015) Responses of limagne “clay/organic matter-rich” soil microbial communities to realistic formulated herbicide mixtures, including S-metolachlor, mesotrione, and nicosulfuron. Water Air Soil Pollut 226:1–15CrossRefGoogle Scholar
  37. Junghanns C, Moeder M, Krauss G et al (2005) Degradation of the xenoestrogen nonylphenol by aquatic fungi and their laccases. Microbiology 151:45–57CrossRefGoogle Scholar
  38. Karpouzas DG, Kandeler E, Bru D et al (2014a) A tiered assessment approach based on standardized methods to estimate the impact of nicosulfuron on the abundance and function of the soil microbial community. Soil Biol Biochem 75:282–291CrossRefGoogle Scholar
  39. Karpouzas DG, Papadopoulou E, Ipsilantis I et al (2014b) Effects of nicosulfuron on the abundance and diversity of arbuscular mycorrhizal fungi used as indicators of pesticide soil microbial toxicity. Ecol Indic 39:44–53CrossRefGoogle Scholar
  40. Kaushik NKK, Hynes HBN (1971) Fate of the dead leaves that fall into streams. Arch Hydrobiol 68:465–515Google Scholar
  41. Krauss G-J, Solé M, Krauss G et al (2011) Fungi in freshwaters: ecology, physiology and biochemical potential. FEMS Microbiol Rev 35:620–651CrossRefGoogle Scholar
  42. Kreutz LC, Barcellos LJG, Silva TO et al (2008) Acute toxicity test of agricultural pesticides on silver catfish (Rhamdia quelen) fingerlings. Ciênc Rural 38:1050–1055CrossRefGoogle Scholar
  43. Liu D, Maguire RJ, Lau YL et al (2000) Factors affecting chemical biodegradation. Environ Toxicol 15:476–483CrossRefGoogle Scholar
  44. Liu J, Chen S, Ding J et al (2015) Sugarcane bagasse as support for immobilization of Bacillus pumilus HZ-2 and its use in bioremediation of mesotrione-contaminated soils. Appl Microbiol Biotechnol 99:10839–10851CrossRefGoogle Scholar
  45. Lu XH, Kang ZH, Tao B et al (2012) Degradation of nicosulfuron by Bacillus subtilis YB1 and Aspergillus niger YF1. Appl Biochem Microbiol 48:460–466CrossRefGoogle Scholar
  46. Martin C, Corvini PF, Vinken R et al (2009) Quantification of the influence of extracellular laccase and intracellular reactions on the isomer-specific biotransformation of the xenoestrogen technical nonylphenol by the aquatic hyphomycete Clavariopsis aquatica. Appl Environ Microbiol 75:4398–4409CrossRefGoogle Scholar
  47. Martins PF, Martinez CO, de Carvalho G et al (2007) Selection of microorganisms degrading S-metolachlor herbicide. Braz Arch Biol Technol 50:153–159CrossRefGoogle Scholar
  48. Mayer AM, Staples RC (2002) Laccase: new functions for an old enzyme. Phytochemistry 60:551–565CrossRefGoogle Scholar
  49. Nélieu S, Perreau F, Guichon R et al (2005) Monitoring and effects of nicosulfuron in aquatic mesocosms: development of a simple analytical procedure and evidence for low toxicity to phytoplankton communities. Anal Bioanal Chem 382:108–114CrossRefGoogle Scholar
  50. Neves M, Castro BB, Vidal T et al (2015) Biochemical and populational responses of an aquatic bioindicator species, Daphnia longispina, to a commercial formulation of a herbicide (Primextra® gold TZ) and its active ingredient (S-metolachlor). Ecol Indic 53:220–230CrossRefGoogle Scholar
  51. Ni Y, Lai J, Wan J, Chen L (2014) Photosynthetic responses and accumulation of mesotrione in two freshwater algae. Environ Sci Process Impacts 16:2288–2294CrossRefGoogle Scholar
  52. Oliveira RS, Koskinen WC, Ferreira FA (2001) Sorption and leaching potential of herbicides on Brazilian soils. Weed Res 41:97–110CrossRefGoogle Scholar
  53. Pesce S, Margoum C, Montuelle B (2010) In situ relationships between spatio-temporal variations in diuron concentrations and phototrophic biofilm tolerance in a contaminated river. Water Res 44:1941–1949CrossRefGoogle Scholar
  54. Petric I, Karpouzas DG, Bru D et al (2016) Nicosulfuron application in agricultural soils drives the selection towards NS-tolerant microorganisms harboring various levels of sensitivity to nicosulfuron. Environ Sci Pollut Res 23:4320–4333CrossRefGoogle Scholar
  55. Phyt’eauvergne (2015) Groupe régional d’action contre les pollutions par les produits phytosanitaires. Accessed 11 Dec 2015
  56. Pileggi M, Pileggi SAV, Olchanheski LR et al (2012) Isolation of mesotrione-degrading bacteria from aquatic environments in Brazil. Chemosphere 86:1127–1132CrossRefGoogle Scholar
  57. Prenafeta-Boldu FX, Summerbell R, De Hoog GS (2006) Fungi growing on aromatic hydrocarbons: biotechnology’s unexpected encounter with biohazard? FEMS Microbiol Rev 30:109–130CrossRefGoogle Scholar
  58. Providenti MA, Lee H, Trevors JT (1993) Selected factors limiting the microbial degradation of recalcitrant compounds. J Ind Microbiol 12:379–395CrossRefGoogle Scholar
  59. Romdhane S, Devers-Lamrani M, Martin-Laurent F et al (2015) Isolation and characterization of Bradyrhizobium sp. SR1 degrading two β-triketone herbicides. Environ Sci Pollut Res 23:4138–4148CrossRefGoogle Scholar
  60. Saglio P, Bretaud S, Rivot E, Olsén KH (2003) Chemobehavioral changes induced by short-term exposures to prochloraz, nicosulfuron, and carbofuran in goldfish. Arch Environ Contam Toxicol 45:515–524CrossRefGoogle Scholar
  61. Šantrić L, Radivojević L, Stanković-Kalezić R, Đorđević S (2004) Microbiological activity of soil treated with nicosulfuron. Pestic Fitomedicina 19:55–60Google Scholar
  62. Sarmah AK, Sabadie J (2002) Hydrolysis of sulfonylurea herbicides in soils and aqueous solutions: a review. J Agric Food Chem 50:6253–6265CrossRefGoogle Scholar
  63. Seguin F, Leboulanger C, Rimet F et al (2001) Effects of atrazine and nicosulfuron on phytoplankton in systems of increasing complexity. Arch Environ Contam Toxicol 40:198–208CrossRefGoogle Scholar
  64. Singh BK, Walker A (2006) Microbial degradation of organophosphorus compounds. FEMS Microbiol Rev 30:428–471CrossRefGoogle Scholar
  65. SMVVA (2014) Contrat teritorial de la vallée de l’Auzon - Bilan mi-parcours. 39–43Google Scholar
  66. SOeS (2013) Ministère de l’environnement, de l’énergie et de la mer. Accessed 27 Mar 2016
  67. SOeS (2015) Liste des pesticides recherchés dans les cours d’eau de France métropolitaine en 2013. Accessed 20 May 2016Google Scholar
  68. Song J, Gu J, Zhai Y et al (2013) Biodegradation of nicosulfuron by a Talaromyces flavus LZM1. Bioresour Technol 140:243–248CrossRefGoogle Scholar
  69. Sviridov AV, Shushkova TV, Ermakova IT et al (2015) Microbial degradation of glyphosate herbicides (review). Appl Biochem Microbiol 51:188–195CrossRefGoogle Scholar
  70. Tlili A, Corcoll N, Bonet B et al (2011) In situ spatio-temporal changes in pollution-induced community tolerance to zinc in autotrophic and heterotrophic biofilm communities. Ecotoxicology 20:1823–1839CrossRefGoogle Scholar
  71. Topp E, Tessier L, Gregorich EG (1996) Dairy manure incorporation stimulates rapid atrazine mineralization in an agricultural soil. Can J Soil Sci 76:403–409CrossRefGoogle Scholar
  72. Valiente Moro C, Bricheux G, Portelli C, Bohatier J (2012) Comparative effects of the herbicides chlortoluron and mesotrione on freshwater microalgae. Environ Toxicol Chem 31:778–786CrossRefGoogle Scholar
  73. van der Meer JR (1994) Genetic adaptation of bacteria to chlorinated aromatic compounds. FEMS Microbiol Rev 15:239–249CrossRefGoogle Scholar
  74. Whaley CM, Armel GR, Wilson HP, Hines TE (2006) Comparison of mesotrione combinations with standard weed control programs in corn. Weed Technol 20:605–611CrossRefGoogle Scholar
  75. White TJ, Bruns T, Lee S et al (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protoc Guide Methods Appl 18:315–322Google Scholar
  76. Youness M (2013) Impact de la formulation et du mélange de deux pesticides (mésotrione et tébuconazole) sur leur biodégradation et la croissance de microorganismes. Thesis, DU2378, University Blaise Pascal, Clermont-Ferrand, FranceGoogle Scholar
  77. Zemolin CR, Avila LA, Cassol GV et al (2014) Environmental fate of S-metolachlor: a review. Planta Daninha 32:655–664CrossRefGoogle Scholar
  78. Zhang H, Mu W, Hou Z et al (2012) Biodegradation of nicosulfuron by the bacterium Serratia marcescens N80. J Environ Sci Health Part B 47:153–160CrossRefGoogle Scholar
  79. Zhao W, Wang C, Xu L et al (2015) Biodegradation of nicosulfuron by a novel Alcaligenes faecalis strain ZWS11. J Environ Sci 35:151–162CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Louis Carles
    • 1
    • 2
    • 3
    • 4
    Email author
  • Florent Rossi
    • 1
    • 2
  • Muriel Joly
    • 1
    • 2
  • Pascale Besse-Hoggan
    • 3
    • 4
  • Isabelle Batisson
    • 1
    • 2
  • Joan Artigas
    • 1
    • 2
  1. 1.CNRS, UMR 6023Laboratoire Microorganismes: Génome et Environnement (LMGE)AubièreFrance
  2. 2.Clermont Université, LMGEUniversité Blaise Pascal-Université d’AuvergneClermont-FerrandFrance
  3. 3.CNRS, UMR 6296Institut de Chimie de Clermont-Ferrand (ICCF)AubièreFrance
  4. 4.Clermont Université, Université Blaise PascalICCFClermont-FerrandFrance

Personalised recommendations