Environmental Science and Pollution Research

, Volume 24, Issue 1, pp 66–72 | Cite as

Semi-autonomous inline water analyzer: design of a common light detector for bacterial, phage, and immunological biosensors

  • Elodie C.T. Descamps
  • Damien Meunier
  • Catherine Brutesco
  • Sandra Prévéral
  • Nathalie Franche
  • Ingrid Bazin
  • Bertrand Miclot
  • Philippe Larosa
  • Camille Escoffier
  • Jean-Raphael Fantino
  • Daniel Garcia
  • Mireille Ansaldi
  • Agnès Rodrigue
  • David Pignol
  • Pierre Cholat
  • Nicolas Ginet
In-line Multiplexed Biosensing

Abstract

The use of biosensors as sensitive and rapid alert systems is a promising perspective to monitor accidental or intentional environmental pollution, but their implementation in the field is limited by the lack of adapted inline water monitoring devices. We describe here the design and initial qualification of an analyzer prototype able to accommodate three types of biosensors based on entirely different methodologies (immunological, whole-cell, and bacteriophage biosensors), but whose responses rely on the emission of light. We developed a custom light detector and a reaction chamber compatible with the specificities of the three systems and resulting in statutory detection limits. The water analyzer prototype resulting from the COMBITOX project can be situated at level 4 on the Technology Readiness Level (TRL) scale and this technical advance paves the way to the use of biosensors on-site.

Keywords

Bioluminescence Chemiluminescence On-site water analyzer Biosensors Bacterial pathogens Metals Toxins 

Notes

Acknowledgments

This work was funded by the French national research agency ANR on the call-for-project ECOTECH (project COMBITOX) and also supported by the Centre National de la Recherche Scientifique and the Commissariat à l’Energie Atomique et aux Energies Alternatives (program NRBC).

References

  1. Ansaldi M, Bazin I, Cholat P et al (2015) Toward inline multiplex biodetection of metals, bacteria, and toxins in water networks: the COMBITOX project. Environ Sci Pollut Res Int. doi:10.1007/s11356-015-5582-4 Google Scholar
  2. Baldwin TO, Christopher JA, Raushel FM et al (1995) Structure of bacterial luciferase. Curr Opin Struct Biol 5:798–809CrossRefGoogle Scholar
  3. Bazin I, Seo HB, Suehs CM et al (2016) Profiling the biological effects of wastewater samples via bioluminescent bacterial biosensors combined with estrogenic assays. Environ Sci Pollut Res Int. doi:10.1007/s11356-016-6050-5 Google Scholar
  4. Brutesco C, Prévéral S, Escoffier C et al (2016) Bacterial host and reporter gene optimization for genetically encoded whole cell biosensors. Environ Sci Pollut Res Int. doi:10.1007/s11356-016-6952-2 Google Scholar
  5. Camanzi L, Bolelli L, Maiolini E et al (2011) Optimal conditions for stability of photoemission and freeze drying of two luminescent bacteria for use in a biosensor. Environ Toxicol Chem SETAC 30:801–805. doi:10.1002/etc.452 CrossRefGoogle Scholar
  6. Cayron J, Prudent E, Escoffier C et al (2015) Pushing the limits of nickel detection to nanomolar range using a set of engineered bioluminescent Escherichia coli. Environ Sci Pollut Res Int. doi:10.1007/s11356-015-5580-6 Google Scholar
  7. Daunert S, Barrett G, Feliciano JS et al (2000) Genetically engineered whole-cell sensing systems: coupling biological recognition with reporter genes. Chem Rev 100:2705–2738CrossRefGoogle Scholar
  8. Demey H, Tria SA, Soleri R et al (2015) Sorption of his-tagged protein G and protein G onto chitosan/divalent metal ion sorbent used for detection of microcystin-LR. Environ Sci Pollut Res Int. doi:10.1007/s11356-015-5758-y Google Scholar
  9. Elad T, Almog R, Yagur-Kroll S et al (2011) Online monitoring of water toxicity by use of bioluminescent reporter bacterial biochips. Environ Sci Technol 45:8536–8544. doi:10.1021/es202465c CrossRefGoogle Scholar
  10. Franche N, Vinay M, Ansaldi M (2016) Substrate-independent luminescent phage-based biosensor to specifically detect enteric bacteria such as E. coli. Environ Sci Pollut Res Int. doi:10.1007/s11356-016-6288-y Google Scholar
  11. Horry H, Charrier T, Durand M-J et al (2007) Technological conception of an optical biosensor with a disposable card for use with bioluminescent bacteria. Sensors Actuators B Chem 122:527–534. doi:10.1016/j.snb.2006.06.033 CrossRefGoogle Scholar
  12. Horry H, Durand M-J, Picart P et al (2004) Development of a biosensor for the detection of tributyltin. Environ Toxicol 19:342–345. doi:10.1002/tox.20030 CrossRefGoogle Scholar
  13. Michelini E, Cevenini L, Calabretta MM et al (2013) Field-deployable whole-cell bioluminescent biosensors: so near and yet so far. Anal Bioanal Chem 405:6155–6163. doi:10.1007/s00216-013-7043-6 CrossRefGoogle Scholar
  14. Moll N, Pascal E, Dinh DH et al (2007) A Love wave immunosensor for whole E. coli bacteria detection using an innovative two-step immobilisation approach. Biosens Bioelectron 22:2145–2150. doi:10.1016/j.bios.2006.09.032 CrossRefGoogle Scholar
  15. Prévéral S, Brutesco C, Descamps ECT et al (2016) A bioluminescent arsenite biosensor designed for inline water analyzer. Environ Sci Pollut Res Int. doi:10.1007/s11356-015-6000-7 Google Scholar
  16. Rompré A, Servais P, Baudart J et al (2002) Detection and enumeration of coliforms in drinking water: current methods and emerging approaches. J Microbiol Methods 49:31–54CrossRefGoogle Scholar
  17. Ryan O, Smyth MR, Fágáin CO (1994) Horseradish peroxidase: the analyst’s friend. Essays Biochem 28:129–146Google Scholar
  18. Winson MK, Swift S, Hill PJ et al (1998) Engineering the luxCDABE genes from Photorhabdus luminescens to provide a bioluminescent reporter for constitutive and promoter probe plasmids and mini-Tn5 constructs. FEMS Microbiol Lett 163:193–202CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Elodie C.T. Descamps
    • 1
    • 2
    • 3
  • Damien Meunier
    • 4
  • Catherine Brutesco
    • 1
    • 2
    • 3
  • Sandra Prévéral
    • 1
    • 2
    • 3
  • Nathalie Franche
    • 5
  • Ingrid Bazin
    • 6
  • Bertrand Miclot
    • 4
  • Philippe Larosa
    • 4
  • Camille Escoffier
    • 1
    • 2
    • 3
  • Jean-Raphael Fantino
    • 5
  • Daniel Garcia
    • 1
    • 2
    • 3
  • Mireille Ansaldi
    • 5
  • Agnès Rodrigue
    • 7
  • David Pignol
    • 1
    • 2
    • 3
  • Pierre Cholat
    • 4
  • Nicolas Ginet
    • 1
    • 2
    • 3
    • 5
  1. 1.CEA, DRF, BIAM, Lab Bioenerget CellulaireSaint-Paul-lez-DuranceFrance
  2. 2.CNRS, UMR Biol Veget & Microbiol EnvironSaint-Paul-lez-DuranceFrance
  3. 3.Aix-Marseille UniversitéSaint-Paul-lez-DuranceFrance
  4. 4.AP2E, 240, rue Louis de BroglieAix-en-ProvenceFrance
  5. 5.Laboratoire de Chimie Bactérienne, UMR7283, Centre National de la Recherche ScientifiqueAix-Marseille UniversitéMarseilleFrance
  6. 6.Laboratoire de Génie de L’Environnement industrielÉcole des Mines d’AlèsAlèsFrance
  7. 7.Université de Lyon, Lyon, F-69003, INSA de Lyon, F-69621, CNRS, UMR5240, Microbiologie, Adaptation et Pathogénie, Villeurbanne, Université Lyon 1LyonFrance

Personalised recommendations