Environmental Science and Pollution Research

, Volume 23, Issue 24, pp 25501–25511 | Cite as

Detection of comammox bacteria in full-scale wastewater treatment bioreactors using tag-454-pyrosequencing

  • Alejandro Gonzalez-Martinez
  • Alejandro Rodriguez-Sanchez
  • M. C. M van Loosdrecht
  • Jesus Gonzalez-Lopez
  • Riku Vahala
Short Research and Discussion Article


The nitrogen cycle has been expanded with the recent discovery of Nitrospira strains that can conduct complete ammonium oxidation (commamox). Their importance in the nitrogen cycle within engineered ecosystems has not yet been analyzed. In this research, the community structure of the Bacteria domain of six full-scale activated sludge systems and three autotrophic nitrogen removal systems in the Netherlands and China has been investigated through tag-454-pyrosequencing. The phylogenetic analyses conducted in the present study showed that just a few of the Nitrospira sequences found in the bioreactors were comammox. Multivariate redundancy analysis of nitrifying genera showed an outcompetition of Nitrosomonas and non-comammox Nitrospira. Operational data from the bioreactors suggested that comammox could be favored at low temperature, low nitrogen substrate, and high dissolved oxygen. The non-ubiquity and low relative abundance of comammox in full-scale bioreactors suggested that this phylotype is not very relevant in the nitrogen cycle in wastewater treatment plants.


Activated sludge Comammox Nitrogen Phylogenetics Pyrosequencing 



The authors would like to acknowledge the support given by the Department of Civil and Environmental Engineering of the University of Aalto, Finland; the Institute of Water Research of the University of Granada, Spain; and the Department of Biotechnology of the Technical University of Delft, the Netherlands; as well, the authors would like to acknowledge the support provided by the personnel of the wastewater treatment plants of Amsterdam West, Breda, Dokhaven, Harnaschpolder, Kortenoord, Vianen, Apeldoorn, Meihua East, and Olburgen.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.

Supplementary material

11356_2016_7914_Fig8_ESM.gif (3 mb)
Figure S1

Bayesian interference tree cladogram of all comammox candidate OTUs in the AS systems compared to Daims et al. 2015 phylogeny. (GIF 3045 kb)

11356_2016_7914_MOESM1_ESM.tiff (40.3 mb)
High resolution image (TIFF 41227 kb)
11356_2016_7914_Fig9_ESM.gif (1.4 mb)
Figure S2

Bayesian interference tree cladogram of all comammox candidate OTUs in the AS systems compared to van Kessel et al. 2015 phylogeny. (GIF 1432 kb)

11356_2016_7914_MOESM2_ESM.tiff (17.5 mb)
High resolution image (TIFF 17903 kb)
11356_2016_7914_Fig10_ESM.gif (2.8 mb)
Figure S3

Bayesian interference tree cladogram of all comammox candidate OTUs in the ANR systems compared to Daims et al. 2015 phylogeny. (GIF 2913 kb)

11356_2016_7914_MOESM3_ESM.tiff (37.7 mb)
High resolution image (TIFF 38637 kb)
11356_2016_7914_Fig11_ESM.gif (1.6 mb)
Figure S4

Bayesian interference tree cladogram of all comammox candidate OTUs in the ANR systems compared to van Kessel et al. 2015 phylogeny. (GIF 1671 kb)

11356_2016_7914_MOESM4_ESM.tiff (19.5 mb)
High resolution image (TIFF 19940 kb)


  1. Chao Y, Mao Y, Yu K, Zhang T (2016) Novel nitrifiers and comammox in a full-scale hybrid biofilm and activated sludge reactor revealed by metagenomics approach. Appl Microbiol Biotechnol 100:8225–8237. doi: 10.1007/s00253-016-7655-9 CrossRefGoogle Scholar
  2. Daims H, Lebedeva EV, Pjevac P et al (2015) Complete nitrification by Nitrospira bacteria. Nature 528:504–509. doi: 10.1038/nature16461 Google Scholar
  3. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. doi: 10.1093/nar/gkh340 CrossRefGoogle Scholar
  4. Edgar RC, Haas BJ, Clemente JC et al (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200. doi: 10.1093/bioinformatics/btr381 CrossRefGoogle Scholar
  5. Gajewska M, Jóźwiakowski K, Ghrabi A, Masi F (2015) Impact of influent wastewater quality on nitrogen removal rates in multistage treatment wetlands. Environ Sci Pollut Res 22:12840–12848. doi: 10.1007/s11356-014-3647-4 CrossRefGoogle Scholar
  6. Ge S, Wang S, Yang X et al (2014) Detection of nitrifiers and evaluation of partial nitrification for wastewater treatment: a review. Chemosphere 140:85–98. doi: 10.1016/j.chemosphere.2015.02.004 CrossRefGoogle Scholar
  7. Gonzalez-Martinez A, Poyatos JM, Hontoria E, Osorio F (2011) Treatment of effluents polluted by nitrogen with new biological technologies based on autotrophic nitrification-denitrification processes. 74–84Google Scholar
  8. Gonzalez-Martinez A, Rodriguez-Sanchez A, Rodelas B et al (2015a) 454-Pyrosequencing analysis of bacterial communities from autotrophic nitrogen removal bioreactors utilizing universal primers: effect of annealing temperature. Biomed Res Int. doi: 10.1155/2015/892013 Google Scholar
  9. Gonzalez-Martinez A, Osorio F, Morillo JA et al (2015b) Comparison of bacterial diversity in full scale anammox bioreactors operated under different conditions. Biotechnol Prog n/a–n/a. doi: 10.1002/btpr.2151 Google Scholar
  10. Gonzalez-Martinez A, Rodriguez-Sanchez A, Garcia-Ruiz MJ et al (2015c) Impact of methionine on a partial-nitritation biofilter. Environ Sci Pollut Res. doi: 10.1007/s11356-015-5889-1 Google Scholar
  11. Gonzalez-Martinez A, Rodriguez-Sanchez A, Lotti T et al (2016a) Comparison of bacterial communities of conventional and A-stage activated sludge systems. Sci Rep 6:18786. doi: 10.1038/srep18786 CrossRefGoogle Scholar
  12. Gonzalez-Martinez A, Garcia-Ruiz MJ, Rodriguez-Sanchez A, Osorio F, Gonzalez-Lopez J (2016b) Archaeal and bacterial community dynamics and bioprocess performance of a bench-scale two-stage anaerobic digester. Appl Microbiol Biotechnol. doi: 10.1007/s00253-016-7393-z Google Scholar
  13. Gruber-Dorninger C, Pester M, Kitzinger K et al (2015) Functionally relevant diversity of closely related Nitrospira in activated sludge. ISME J 9:643–655. doi: 10.1038/ismej.2014.156 CrossRefGoogle Scholar
  14. Huse SM, Welch DM, Morrison HG, Sogin ML (2010) Ironing out the wrinkles in the rare biosphere through improved OTU clustering. Environ Microbiol 12:1889–1898. doi: 10.1111/j.1462-2920.2010.02193.x CrossRefGoogle Scholar
  15. Jordaan K, Bezuidenhout CC (2015) Bacterial community composition of an urban river in the North West Province, South Africa, in relation to physico-chemical water quality. Environ Sci Pollut Res 1–13. doi: 10.1007/s11356-015-5786-7
  16. Lackner S, Gilbert EM, Vlaeminck SE, Joss A, Horn H, van Loosdrecht MCM (2014) Full-scale partial nitritation/anammox experiences—an application survey. Water Res 55:292–303. doi: 10.1016/j.watres.2014.02.032 CrossRefGoogle Scholar
  17. Nielsen PH, Mielczareck AT, Kragelund C et al (2010) A conceptual ecosystem model of microbial communities in enhanced biological phosphorous removal plants. Water Res 44:5070–5088. doi: 10.1016/j.watres.2010.07.036 CrossRefGoogle Scholar
  18. Pinto AJ, Marcus DN, Ijaz UZ, Bautista-de Iose Santos QM, Dick GJ, Raskin L (2015) Metagenomic evidence for the presence of Nitrospira-like bacteria in drinking water system. mSphere 1:e00054–e00015. doi: 10.1128/mSphere.00054-15 Google Scholar
  19. Santoro AE (2016) The do-it-all nitrifier. Science 351:342–343. doi: 10.1126/science.add9671
  20. Schloss PD, Westcott SL, Ryabin T et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541. doi: 10.1128/AEM.01541-09 CrossRefGoogle Scholar
  21. Schloss PD, Gevers D, Westcott SL (2011) Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS One. doi: 10.1371/journal.pone.0027310 Google Scholar
  22. Stöver BC, Müller KF (2010) TreeGraph 2: combining and visualizing evidence from different phylogenetic analyses. BMC Bioinformatics 11:7. doi: 10.1186/1471-2105-11-7 CrossRefGoogle Scholar
  23. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Bio Evol 30(12):2725–2729. doi: 10.1093/molbev/mst197
  24. Tang HL, Chen H (2015) Nitrification at full-scale municipal wastewater treatment plants: evaluation of inhibition and bioaugmentation of nitrifiers. Bioresour Technol 190:76–81. doi: 10.1016/j.biortech.2015.04.063 CrossRefGoogle Scholar
  25. van Kessel MAHJ, Speth DR, Albertsen M et al (2015) Complete nitrification by a single microorganism. Nature 528:555–559. doi: 10.1038/nature16459 Google Scholar
  26. Wang S, Peng Y, Ma B et al (2015) Anaerobic ammonium oxidation in traditional municipal wastewater treatment plants with low-strength ammonium loading: widespread but overlooked. Water Res 84:66–75. doi: 10.1016/j.watres.2015.07.005 CrossRefGoogle Scholar
  27. Wei YM, Wang JQ, Liu TT et al (2015) Bacterial communities of Beijing surface waters as revealed by 454 pyrosequencing of the 16S rRNA gene. Environ Sci Pollut Res 22:12605–12614. doi: 10.1007/s11356-015-4534-3 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Alejandro Gonzalez-Martinez
    • 1
  • Alejandro Rodriguez-Sanchez
    • 2
  • M. C. M van Loosdrecht
    • 3
  • Jesus Gonzalez-Lopez
    • 2
  • Riku Vahala
    • 1
  1. 1.Department of Built Environment, School of engineeringAalto UniversityEspooFinland
  2. 2.Institute of Water ResearchUniversity of GranadaGranadaSpain
  3. 3.Department of BiotechnologyTechnical University of DelftDelftThe Netherlands

Personalised recommendations