Advertisement

Environmental Science and Pollution Research

, Volume 24, Issue 2, pp 1999–2009 | Cite as

Assessment of uptake and phytotoxicity of cyanobacterial extracts containing microcystins or cylindrospermopsin on parsley (Petroselinum crispum L.) and coriander (Coriandrum sativum L)

  • Ana L. Pereira
  • Joana Azevedo
  • Vitor Vasconcelos
Research Article
  • 256 Downloads

Abstract

Blooms of harmful cyanobacteria that synthesize cyanotoxins are increasing worldwide. Agronomic plants can uptake these cyanotoxins and given that plants are ultimately ingested by humans, this represents a public health problem. In this research, parsley and coriander grown in soil and watered through 7 days with crude extracts containing microcystins (MCs) or cylindrospermopsin (CYN) in 0.1–1 μg mL−1 concentration range were evaluated concerning their biomass, biochemical parameters and uptake of cyanotoxins. Although biomass, chlorophylls (a and b), carotenoids and glutathione-S-transferase of parsley and coriander exposed to the crude extracts containing MC or CYN had shown variations, these values were not statistically significantly different. Protein synthesis is not inhibited in coriander exposed to MC or CYN and in parsley exposed to MC. Also, glutathione reductase (GR) and glutathione peroxidase (GPx) in parsley and coriander was not affected by exposure to MC, and in coriander, the CYN did not induce statistically significant differences in these two antioxidative enzymes. Only parsley showed statistically significant increase in protein content exposed to 0.5 μg CYN mL−1 (3.981 ± 0.099 mg g−1 FW) compared to control (2.484 ± 0.145 mg g−1 FW), statistically significant decrease in GR exposed to 0.1 μg CYN mL−1 (0.684 ± 0.117 nmol min−1 mg−1 protein) compared to control (1.30 ± 0.06 nmol min−1 mg−1 protein) and statistically significant increase in GPx exposed to 1 μg CYN mL−1 (0.054 ± 0.026 nmol min−1 mg−1 protein) compared to 0.5 μg CYN mL−1 (0.003 ± 0.001 nmol min−1 mg−1 protein). These changes may be due to the induction of defensive mechanisms by plants by the presence of toxic compounds in the soil or probably to a low generation of reactive oxygen species. Furthermore, the parsley and coriander leaves and stems after 10 days of exposure did not accumulate microcystins or cylindrospermopsin.

Keywords

Parsley Coriander Microcystins Cylindrospermopsin Chlorophylls Carotenoids Antioxidative enzymes Uptake 

Notes

Acknowledgments

European Social Funding (FSE) under the Human Potential Operational Program (POPH) of National Strategic Reference Board (QREN) supports the fellowship SFRH/BPD/44459/2008 to Ana L. Pereira. This research was partially supported by the Strategic Funding UID/Multi/04423/2013 through national funds provided by FCT—Foundation for Science and Technology and European Regional Development Fund (ERDF), in the framework of the program PT2020. Thanks are given to Benedita Monteiro and Catarina Santos for the growth, extraction and quantification of microcystins from M. aeruginosa and cylindrospermopsin from A. ovalisporum respectively.

References

  1. Apeldoorn ME, Egmond HP, Speijers GJA, Bakker GJI (2007) Toxins of cyanobacteria. Mol Nutr Food Res 51:7–60. doi: 10.1002/mnfr.200600185 CrossRefGoogle Scholar
  2. Bradford M (1976) A rapid and sensitive method for the quantification of microgram quantifiers of proteins, utilising the principle of protein dye binding. Anal Biochem 72:248–254. doi: 10.1016/0003-2697(76)90527-3 CrossRefGoogle Scholar
  3. Carlberg I, Mannervik B (1975) Purification and characterization of the flavoenzyme glutathione reductase from rat liver. J Biol Chem 250:5475–5480Google Scholar
  4. Chen J, Han FX, Wang F, Zhang H, Shi Z (2012) Accumulation and phytotoxicity of microcystin-LR in rice (Oryza sativa). Ecotoxicol Environ Saf 76:193–199. doi: 10.1016/j.ecoenv.2011.09.022 CrossRefGoogle Scholar
  5. Corbel S, Mougin C, Bouaïcha N (2014) Cyanobacterial toxins: modes of actions, fate in aquatic and soil ecosystems, phytotoxicity and bioaccumulation in agricultural crops. Chemosphere 96:1–15. doi: 10.1007/s10311-015-0518 CrossRefGoogle Scholar
  6. Corbel S, Bouaïcha N, Nélieu S, Mougin C (2015a) Soil irrigation with water and toxic cyanobacterial microcystins accelerates tomato development. Environ Chem Lett 13:447–452. doi: 10.1007/s10311-015-0518 CrossRefGoogle Scholar
  7. Corbel S, Mougin C, Martin-Laurent F, Crouzet O, Bru D, Nélieu S, Bouaïcha N (2015b) Evaluation of phytotoxicity and ecotoxicity of a cyanobacterial extract containing microcystins under realistic environmental concentrations and in a soil-plant system. Chemosphere 128:332–340. doi: 10.1016/j.chemosphere.2015.02.008 CrossRefGoogle Scholar
  8. Corbel S, Mougin C, Nélieu S, Delarue G, Bouaïcha N (2016) Evaluation of the transfer and accumulation of microcystins in tomato (Solanum lycopersicum cultivar MicroTom) tissues using a cyanobacterial extract containing microcystins and the radiolabeled microcystin-LR (14C-MC-LR). Sci Total Environ 541:1052–1058. doi: 10.1016/j.scitotenv.2015.10.004 CrossRefGoogle Scholar
  9. Cruz AA, Hiskia A, Kaloudis T, Chernoff N, Hill D, Antoniou MG, He X, Loftin K, O'Shea K, Zhao C, Peleaz M, Han C, Lynch TJ, Dionysiou DD (2013) A review on cylindrospermopsin: the global occurrence, detection, toxicity and degradation of a potent cyanotoxin. Environ Sci: Processes Impacts 15:1979–2003. doi: 10.1039/c3em00353a Google Scholar
  10. Flohé L, Günzler WA (1984) Assays of glutathione peroxidase. Methods Enzimol 105:114–121. doi: 10.1016/S0076-6879(84)05015-1 CrossRefGoogle Scholar
  11. Funari E, Testai E (2008) Human health risk assessment related to cyanotoxins exposure. Crit Rev Toxicol 38:97–125. doi: 10.1080/10408440701749454 CrossRefGoogle Scholar
  12. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930. doi: 10.1016/j.plaphy.2010.08.016 CrossRefGoogle Scholar
  13. Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione-S-transferases: the first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139Google Scholar
  14. Hoagland DR, Arnon DI (1938) The water-culture method for growing plants without soil. University of California, College of Agriculture Experimental Station Circ., Berkeley.Google Scholar
  15. Järvenpää S, Lundberg-Niinistö C, Spoo L, Sjövall O, Tyystjärvi E, Meriluoto J (2007) Effects of microcystins on broccoli and mustard, and analysis of accumulated toxin by liquid chromatography-mass spectrometry. Toxicon 49:865–874. doi: 10.1016/j.toxicon.2006.12.008 CrossRefGoogle Scholar
  16. Kinnear S (2010) Cylindrospermopsin: a decade of progress in bioaccumulation research. Mar Drugs 8:542–564. doi: 10.3390/md8030542 CrossRefGoogle Scholar
  17. Klitzke S, Beusch C, Fastner J (2011) Sorption of the cyanobacterial toxins cylindrospermopsin and anatoxin-a to sediments. Water Res 45:1338–1346. doi: 10.1016/j.watres.2010.10.019 CrossRefGoogle Scholar
  18. Li Y-W, Zhang X-J, Xiang L, Deng Z-S, Huang B-H, Wen H-F, Sun T-F, Cai Q-Y, Li H, Mo C-H (2014) Analysis of trace microcystin in vegetables using solid-phase extraction followed by high performance liquid chromatography triple-quadruple mass spectrometry. J Agr Food Chem 62:11831–11839. doi: 10.1021/jf5033075 CrossRefGoogle Scholar
  19. Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382. doi: 10.1016/0076-6879(87)48036-1 CrossRefGoogle Scholar
  20. Marsoni M, Vannini C, Campa M, Cucchi U, Espen L, Bracale M (2005) Protein extraction from grape tissues by two-dimensional electrophoresis. Vitis 44:181–186Google Scholar
  21. Máthé C, M-Hamvas M, Vasas G (2013) Microcystin-LR and cylindrospermopsin induced alterations in chromatin organization of plant cells. Mar Drugs 11:3689–3717. doi: 10.3390/md11103689 CrossRefGoogle Scholar
  22. Miller M, Critchley M, Hutson J, Fallowfield H (2001) The adsorption of cyanobacterial hepatotoxins from water onto soil during batch experiments. Water Res 35:1461–1468. doi: 10.1016/S0043-1354(00)00419-X CrossRefGoogle Scholar
  23. Mohamed ZA, Al Shehri AM (2009) Microcystins in groundwater wells and their accumulation in vegetable plants irrigated with contaminated waters in Saudi Arabia. J Hazardous Mater 172:310–315. doi: 10.1016/j.jhazmat.2009.07.010 CrossRefGoogle Scholar
  24. Pearson L, Mihali T, Moffitt M, Kellmann R, Neilan BA (2010) On the chemistry, toxicology and genetics of the cyanobacterial toxins, microcystins, nodularin, saxitoxin and cylindrospermopsin. Mar Drugs 8:1650–1680. doi: 10.3390/md8051650 CrossRefGoogle Scholar
  25. Pereira AL, Monteiro B, Azevedo J, Campos A, Osório H, Vasconcelos V (2015) Effects of the naturally-occurring contaminant microcystins on the Azolla filiculoides-Anabaena azollae symbiosis. Ecotoxicol Environ Saf 118:11–20. doi: 10.1016/j.ecoenv.2015.04.008 CrossRefGoogle Scholar
  26. Pflugmacher S, Hofmann J, Hübner B (2007a) Effects on growth and physiological parameters in wheat (Triticum aestivum L.) grown in soil and irrigated with cyanobacterial toxin contaminated water. Environ Toxicol Chem 26:2710–2716. doi: 10.1897/07-145.1 CrossRefGoogle Scholar
  27. Pflugmacher S, Aulhorn M, Grimm B (2007b) Influence of a cyanobacterial crude extract containing microcystin-LR on the physiology and antioxidative defence systems of different spinach variants. New Phytol 175:482–489. doi: 10.1111/j.1469-8137.2007.02144.x CrossRefGoogle Scholar
  28. Romero-Oliva CS, Contardo-Jara V, Block T, Pflugmacher S (2014) Accumulation of microcystin congeners in different aquatic plants and crops—a case study from Lake Amatitlán, Guatemala. Ecotoxicol Environ Saf 102:121–128. doi: 10.1016/j.ecoenv.2014.01.031 CrossRefGoogle Scholar
  29. Santos C, Azevedo J, Campos A, Vasconcelos V, Pereira AL (2015) Biochemical and growth performance of the aquatic macrophyte Azolla filiculoides to sub-chronic exposure to cylindrospermopsin. Ecotoxicol 24:1848–1857. doi: 10.1007/s10646-015-1521-x CrossRefGoogle Scholar
  30. Saqrane S, Oudra B (2009) CyanoHAB occurrence and water irrigation cyanotoxin contamination: ecological impacts and potential health risks. Toxins 1:113–122. doi: 10.3390/toxins1020113 CrossRefGoogle Scholar
  31. Yin L, Huang J, Huang W, Li D, Wang G, Liu Y (2005) Microcystin-RR-induced accumulation of reactive oxygen species and alteration of antioxidant systems in tobacco BY-2 cells. Toxicon 46:507–512. doi: 10.1016/j.toxicon.2005.06.015 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), BBE (Blue Biotechnology and Ecotoxicology)University of PortoPortoPortugal
  2. 2.Department of BiologyFaculty of Sciences of the University of PortoPortoPortugal

Personalised recommendations