Environmental Science and Pollution Research

, Volume 24, Issue 2, pp 1735–1747 | Cite as

Oxidative stress responses of Daphnia magna exposed to effluents spiked with emerging contaminants under ozonation and advanced oxidation processes

  • Ana Lourdes Oropesa
  • Sara C Novais
  • Marco F. L Lemos
  • Azahara Espejo
  • Carlos Gravato
  • Fernando Beltrán
Research Article


Integration of conventional wastewater treatments with advanced oxidation processes (AOPs) has become of great interest to remove pharmaceuticals and their metabolites from wastewater. However, application of these technologies generates reactive oxygen species (ROS) that may reach superficial waters through effluents from sewage treatment plants. The main objective of the present study was to elucidate if ROS present in real effluents after biological and then chemical (single ozonation, solar photolytic ozonation, solar photocatalytic ozonation (TiO2, Fe3O4) and solar photocatalytic oxidation (TiO2)) treatments induce oxidative stress in Daphnia magna. For this, the activity of two antioxidant enzymes (superoxide dismutase and catalase) and the level of lipid peroxidation were determined in Daphnia. The results of oxidative stress biomarkers studied suggest that D. magna is able to cope with the superoxide ion radical (O2·) present in the treated effluent due to single ozonation by mainly inducing the antioxidant activity superoxide dismutase, thus preventing lipid peroxidation. Lethal effects (measured in terms of immobility) were not observed in these organisms after exposure to any solution. Therefore, in order to probe the ecological efficiency of urban wastewater treatments, studies on lethal and sublethal effects in D. magna would be advisable.


Advanced oxidation processes Daphnia magna Enzymatic antioxidant defenses Lipid peroxidation Pharmaceuticals 



Authors wish to thank the Spanish CICYT, the European Feder (Project CTQ2012/35789/C02/01), the Consejería de Empleo, Empresa e Innovación Gobierno de Extremadura, and the Feder founds for the economic support. Azahara Espejo also thank the Consejería de Empleo, Empresa e Innovación Gobierno de Extremadura and the Feder founds for an FPI grant. Sara C. Novais would also like to acknowledge the financial support given by Fundação para a Ciência e Tecnologia (FCT) through a post-doctoral research grant (SFRH/BPD/ 94500/2013).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Bader H, Hoigné J (1981) Determination of ozone in water by the indigo method. Water Res 15:449–456CrossRefGoogle Scholar
  2. Barata C, Varo I, Navarro JC, Arun S, Porte C (2005) Antioxidant enzyme activities and lipid peroxidation in the freshwater cladoceran Daphnia magna exposed to redox cycling compounds. Comp Biochem Physiol 140C:175–186Google Scholar
  3. Beltrán FJ (2004) Ozone reaction kinetics for water and wastewater systems. Lewis Publishers, Boca Ratón; FloridaGoogle Scholar
  4. Beltrán FJ, Aguinaco A, García-Araya JF, Oropesa AL (2008) Ozone and photocatalytic processes to remove the antibiotic sulfamethoxazole from water. Water Res 42:3799–3808CrossRefGoogle Scholar
  5. Beltrán FJ, Pocostales P, Alvarez P, Oropesa AL (2009) Diclofenac removal from water with ozone and activated carbon. J Hazard Mater 163:768–776CrossRefGoogle Scholar
  6. Bird RP, Draper AH (1984) Comparative studies on different methods of malondyhaldehyde determination. Method Enzymol 90:105–110Google Scholar
  7. Borgeraas J, Hessen DO (2000) UV-B induced mortality and antioxidant activities in Daphnia magna at different oxygen concentrations and temperatures. J Plankton Res 22:1167–1183CrossRefGoogle Scholar
  8. Borgeraas J, Hessen DO (2002a) Diurnal patterns of antioxidant activity in alpine and artic Daphnia under in situ UV-radiation. Arch Hydrobiol 156:83–95CrossRefGoogle Scholar
  9. Borgeraas J, Hessen DO (2002b) Variations of antioxidant enzymes in Daphnia species and populations as related to UV exposure. Hydrobiologia 477:15–30CrossRefGoogle Scholar
  10. Boroski M, Rodrigues AC, Garcia JC, Sampaio LC, Nozaki J, Hioka N (2009) Combined electrocoagulation and TiO2 photoassissted treatment applied to wastewater effluents from pharmaceutical and cosmetic industries. J Hazard Mater 162(1):448–454CrossRefGoogle Scholar
  11. Bradford MM (1976) Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  12. Camacho-Muñoz D, Martín J, Santos JL, Aparicio I, Alonso E (2010) Occurrence, temporal evolution and risk assessment of pharmaceutically active compounds in Doñana Park (Spain). J Hazard Mater 183:602–608CrossRefGoogle Scholar
  13. Clairborne A (1985) Catalase activity. In: Greenwald RA (ed) CRC handbook of methods in oxygen radical research. CRC Press, Boca Raton, FL, USA, pp. 283–284Google Scholar
  14. Cleuvers M (2003) Aquatic ecotoxicity of selected pharmaceuticals including the assessment of combination effects. Toxicol Lett 142:185–194CrossRefGoogle Scholar
  15. Council Directive 91/271/EEC of 21 May 1991 concerning urban wastewater treatment.Google Scholar
  16. Deblonde T, Cossu-Leguille C, Hartemann P (2011) Emerging pollutants in wastewater: a review of the literature. Int J Hyg Envir Health 214:442–448CrossRefGoogle Scholar
  17. Espejo A, Aguinaco A, Amat AM, Beltrán FJ (2014a) Some ozone advanced oxidation processes to improve the biological removal of selected pharmaceutical contaminants from urban wastewater. J Environ Sci Heal A: Toxic/Hazardous Substances and Environmental Engineering 49(4):410–421CrossRefGoogle Scholar
  18. Espejo A, Aguinaco A, García-Araya JF, Beltrán FJ (2014b) Sequential ozone advanced oxidation and biological oxidation processes to remove selected pharmaceutical contaminants from an urban wastewater. J. Environ. Sci. Heal, A: Toxic/Hazardous Substances and Environmental Engineering 49(9):1015–1022CrossRefGoogle Scholar
  19. Fatta-Kassinos D, Vasquez MI, Kümmerer K (2011) Transformation products of pharmaceuticals in surface waters and wastewater formed during photolysis and advanced oxidation processes—degradation, elucidation of byproducts and assessment of their biological potency. Chemosphere 85:693–709CrossRefGoogle Scholar
  20. Fernández C, González-Doncel M, Pro J, Carbonell G, Tarazona JV (2010) Occurrence of pharmaceutically active compounds in surface waters of the Henares-Jarama-Tajo river system (Madrid, Spain) and a potential risk characterization. Sci Total Environ 408:543–551CrossRefGoogle Scholar
  21. García- Araya JF, Beltrán F, Aguinaco A (2010) Diclofenac removal from water by ozone and photolytic TiO2 catalysed processes. J Chem Technol Biotechnol 85:798–804CrossRefGoogle Scholar
  22. Hirakawa T, Nosaka Y (2002) Properties of O2· and OH· formed in TiO2 aqueous suspensions by photocatalytic reaction and influence of H2O2 and some ions. Langmuir 18:3247–3254CrossRefGoogle Scholar
  23. International Organization for Standardisation (I.S.O.) 6341 (1996) Water quality-determination of the inhibition to the mobility of Daphnia magna Strauss (Cladocera, Crustacea)—acute toxicity test, British Standards Institute, London.Google Scholar
  24. Jemec A, Tišler T, Erjavec B, Pintar A (2012) Antioxidant responses and whole-organism changes in Daphnia magna acutely and chronically exposed to endocrine disruptor bisphenol A. Ecotox Environ Safe 86:213–218CrossRefGoogle Scholar
  25. Kasprzyk-Hordern B, Dinsdale RM, Guwy AJ (2008) The occurrence of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs in surface water in South Wales, UK. Water Res 42(13):3498–3518CrossRefGoogle Scholar
  26. Kim KT, Klaine SJ, Cho J, Kim SH, Kim SD (2010) Oxidative stress responses of Daphnia magna exposed to TiO2 nanoparticles according to size fraction. Sci Total Environ 408:2268–2272CrossRefGoogle Scholar
  27. Klavarioti M, Mantzavinos D, Kassinos D (2009) Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environ Int 35:402–407CrossRefGoogle Scholar
  28. Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999-2000: a national reconnaissance. Environ Sci Technol 15- 36(6):1202–1211CrossRefGoogle Scholar
  29. Kümmerer K (2004) Pharmaceuticals in the environment. In: Kümmerer K (ed) Pharmaceuticals in the environment: sources, fate, effects and risk. New York, Springer, pp. 3–11CrossRefGoogle Scholar
  30. Lin AYC, Tsai YT (2009) Occurrence of pharmaceuticals in Taiwan’s surface waters: impact of waste streams from hospitals and pharmaceutical production facilities. Sci Total Environ 407:3793–3802CrossRefGoogle Scholar
  31. Livingstone DR (2001) Contaminated-stimulated reactive oxygen species production and oxidative damage in aquatic organisms. Mar Pollut Bull 42:656–666CrossRefGoogle Scholar
  32. Livingstone DR (2003) Oxidative stress in aquatic organisms in relation to pollution and aquaculture. Rev Med Vet 154:427–430Google Scholar
  33. Livingstone DR, Lemaire P, Matthews A, Peters L, Bucke D, Law RJ (1993) Pro-oxidant, antioxidant and 7-ethoxyresorufin O-deethylase (EROD) activity responses in liver of dab (Limanda limanda) exposed to sediment contaminated with hydrocarbons and other chemicals. Mar Pollut Bull 26:602–606CrossRefGoogle Scholar
  34. Marquez G, Rodriguez E, Beltrán FJ, Alvarez P (2014) Solar photocatalytic ozonation of a mixture of pharmaceutical compounds in water. Chemosphere 113:71–78CrossRefGoogle Scholar
  35. Masschelein W (1977) Spectrophotometric determination of of residual hydrogen peroxide. Water Works Sewage 69:72–76Google Scholar
  36. McCord M, Fridovich I (1969) Superoxide dismutase an enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244:6049–6055Google Scholar
  37. Means J, Anderson S (1981) Comparison of five different methods for measuring biodegradability in aqueous environments. Water Air Soil Poll 16:301–315CrossRefGoogle Scholar
  38. Monteiro SC, Boxall ABA (2010) Occurrence and fate of human pharmaceuticals in the environment. Rev Environ Contam T 202:53–154Google Scholar
  39. Moore WA, Kroner RC, Ruchhoft CC (1949) Dichromate reflux method for determination of oxygen consumed. Anal Chem 21:953–957CrossRefGoogle Scholar
  40. Novais SC, Gomes SIL, Gravato C, Guilhermino L, De Coen W, Soares AMVM, Amorim MJB (2011) Reproduction and biochemical responses in Enchytraeus albidus (Oligochaeta) to zinc or cadmium exposures. Environ Pollut 159:1836–1843CrossRefGoogle Scholar
  41. Nunes B, Carvalho F, Guilhermino L (2006) Effects of widely used pharmaceuticals and a detergent on oxidative stress biomarkers of the crustacean Artemia parthenogenetica. Chemosphere 62:581–594CrossRefGoogle Scholar
  42. OECD (Organization for Economic Cooperation and Development) 2004 Guidelines for testing of chemicals N° 202: Daphnia magna acute immobilization test. Paris.Google Scholar
  43. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal-tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358CrossRefGoogle Scholar
  44. Ortiz de la Plata GB, Alfano OM, Cassano AE (2008) Optical properties of goethite catalyst for heterogeneous photo-Fenton reactions. Comparison with a titanium dioxide catalyst. Chem Eng J 137:396–410CrossRefGoogle Scholar
  45. Quiñones DH, Álvarez PM, Rey A, Beltrán FJ (2015) Removal of emerging contaminants from municipal WWTP secondary effluents by solar photocatalytic ozonation. A pilot-scale study. Sep Purif Technol 149:132–139CrossRefGoogle Scholar
  46. Rivas FJ, Beltrán FJ, Encinas A (2012) Removal of emergent contaminants: integration of ozone and photocatalysis. J Environ Manag 100:10–15CrossRefGoogle Scholar
  47. Rosal R, Rodríguez A, Perdigón-Melón JA, Mezcua M, Hernando MD, Letón P, García-Calvo E, Agüera A, Fernández-Alba AR (2008) Removal of pharmaceuticals and kinetics of mineralization by O3/H2O2 in a biotreated municipal wastewater. Water Res 42:3719–3728CrossRefGoogle Scholar
  48. Rybnikova V, Usman M, Hanna K (2016) Removal of PCBs in contaminated soils by means of chemical reduction and advanced oxidation processes. Environ Sci Pollut Res Int. doi: 10.1007/s11356-016-6881-0 Google Scholar
  49. Ternes TA, Stüber J, Herrmann N, McDowell D, Ried A, Kampmann M, Teiser B (2003) Ozonation: a tool for removal of pharmaceuticals, contrast media and musk fragrances from wastewater? Water Res 37:1976–1982CrossRefGoogle Scholar
  50. Trovó AG, Nogueira RFP, Aguera A, Fernandez-Alba AR, Sirtori C, Sixto M (2009) Degradation of sulfamethoxazole in water by solar photo-Fenton. Chemical and toxicological evaluation. Water Res 43(16):3922–3931CrossRefGoogle Scholar
  51. Trovó AG, Pupo Nogueira RF, Agüera A, Fernandez-Alba AR, Malato S (2011) Degradation of the antibiotic amoxicillin by photo-Fenton process—chemical and toxicological assessment. Water Res 45:1394–1402CrossRefGoogle Scholar
  52. Trovó AG, Pupo Nogueira RF, Agüera A, Fernandez-Alba AR, Malato S (2012) Paracetamol degradation intermediates and toxicity during photo-Fenton treatment using different iron species. Water Res 46:5374–5380CrossRefGoogle Scholar
  53. Valcárcel Y, González Alonso S, Rodríguez-Gil JL, Gil A, Catalá M (2011) Detection of pharmaceutically active compounds in the rivers and tap water of the Madrid Region (Spain) and potential ecotoxicological risk. Chemosphere 84:1336–1348CrossRefGoogle Scholar
  54. Vega MP, Pizarro RA (2000) Oxidative stress and defence mechanisms of the freshwater cladoceran Daphnia longispina exposed to UV radiation. J Photochem Photobiol 54B:121–125CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Ana Lourdes Oropesa
    • 1
    • 2
  • Sara C Novais
    • 3
  • Marco F. L Lemos
    • 3
  • Azahara Espejo
    • 4
  • Carlos Gravato
    • 5
  • Fernando Beltrán
    • 4
    • 6
  1. 1.Unidad de Toxicología, Departamento de Sanidad Animal, Facultad de CienciasUniversidad de ExtremaduraBadajozSpain
  2. 2.INBIO G+C - Instituto Universitario de Investigación en Biotecnología Ganadera y CinegéticaUniversidad de ExtremaduraCáceresSpain
  3. 3.MARE - Marine and Environmental Sciences Centre, ESTMInstituto Politécnico de LeiriaPenichePortugal
  4. 4.Departamento de Ingeniería Química y Química Física, Facultad de CienciasUniversidad de ExtremaduraBadajozSpain
  5. 5.Department of Biology & CESAMUniversity of AveiroAveiroPortugal
  6. 6.IACYS - Instituto Universitario de Investigación del Agua, Cambio Climático y SostenibilidadUniversidad de ExtremaduraBadajozSpain

Personalised recommendations