Environmental Science and Pollution Research

, Volume 25, Issue 14, pp 13312–13321 | Cite as

Lower tier toxicity risk assessment of agriculture pesticides detected on the Río Madre de Dios watershed, Costa Rica

  • M Arias-Andrés
  • R Rämö
  • F Mena Torres
  • R Ugalde
  • L Grandas
  • C Ruepert
  • L E Castillo
  • P J Van den Brink
  • J S Gunnarsson
Ecotoxicology in Tropical Regions


Costa Rica is a tropical country with one of the highest biodiversity on Earth. It also has an intensive agriculture, and pesticide runoff from banana and pineapple plantations may cause a high toxicity risk to non-target species in rivers downstream the plantations. We performed a first tier risk assessment of the maximum measured concentrations of 32 pesticides detected over 4 years in the River Madre de Dios (RMD) and its coastal lagoon on the Caribbean coast of Costa Rica. Species sensitivity distributions (SSDs) were plotted in order to derive HC5 values for each pesticide, i.e., hazard concentrations for 5 % of the species, often used as environmental criteria values in other countries. We also carried out toxicity tests for selected pesticides with native Costa Rican species in order to calculate risk coefficients according to national guidelines in Costa Rica. The concentrations of herbicides diuron and ametryn and insecticides carbofuran, diazinon, and ethoprophos exceeded either the HC5 value or the lower limit of its 90 % confidence interval suggesting toxic risks above accepted levels. Risk coefficients of diuron and carbofuran derived using local guidelines indicate toxicity risks as well. The assessed fungicides did not present acute toxic risks according to our analysis. Overall, these results show a possible toxicity of detected pesticides to aquatic organisms and provide a comparison of Costa Rican national guidelines with more refined methods for risk assessment based on SSDs. Further higher tier risk assessments of pesticides in this watershed are also necessary in order to consider pesticide water concentrations over time, toxicity from pesticide mixtures, and eventual effects on ecosystem functions.


Tropics Pesticides Ecotoxicology Risk assessment 



The authors will like to thank Geanina Moraga for making the map of the RMD watershed. We also wish to acknowledge the RIVM, the National Institute for Public Health, and the Environment in the Netherlands for letting us use the ETX database and software. Funding was provided from Universidad Nacional (UNA), Costa Rica, by the Swedish Research Council FORMAS (grant no. 2007–282) and by Stockholm University, Sweden.

Supplementary material

11356_2016_7875_MOESM1_ESM.docx (28 kb)
ESM 1 (DOCX 27 kb)


  1. Arias-Andrés M, Mena-Torres F, Vargas S, Solano K (2014) Sensitivity of Costa Rica’s native cladoceran Daphnia Ambigua and Simocephalus Serrulatus to the organophosphate pesticide ethoprophos. J Environ Biol 35(1):67–71Google Scholar
  2. Boeglin N (2010) Nivel de cumplimiento de decisiones judiciales en materia ambiental relativas a la protección del recurso hídrico. Lecture prepared for Programa Estado de la Nación, 2010. Decimosexto Informe Estado de la Nación en Desarrollo Humano Sostenible. San José, Programa Estado de la NaciónGoogle Scholar
  3. Booij P, Sjollema SB, van der Geest HG et al (2015) Toxic pressure of herbicides on microalgae in Dutch estuarine and coastal waters. J Sea Res. doi: 10.1016/j.seares.2015.05.001 CrossRefGoogle Scholar
  4. Bravo V, Rodríguez T, van Wendel de Joode B et al (2011) Monitoring pesticide use and associated health hazards in central America. Int J Occup Environ Health. doi: 10.1179/107735211799041896 CrossRefGoogle Scholar
  5. Carriquiriborde P, Mirabella P, Waichman A, Solomon K, Van den Brink PJ, Maund S (2014) Aquatic risk assessment of pesticides in Latin America: current status and future needs. Integr Environ Assess Manag 10:539–542CrossRefGoogle Scholar
  6. Castillo LE, Ruepert C, Solis E (2000) Pesticide residues in the aquatic environment of banana plantation areas in the North Atlantic zone of Costa Rica. Environ Toxicol Chem 19:1942–1950CrossRefGoogle Scholar
  7. CGR (2013) Report on the effectiveness of the State to ensure the quality of water in its different uses. Controloria General de la Republica, San José, Costa Rica. (in Spanish)
  8. CICA-CIMAR (2011) Centro de Investigación en Contaminación Ambiental, Centro de Investigaciones Marinas y Limnología. 2011. Informe técnico Proyecto Monitoreo de residuos de plaguicidas. Technical report CICA/CIMAR Universidad de Costa Rica.Google Scholar
  9. Daam MA, Van den Brink PJ (2010) Implications of differences between temperate and tropical freshwater ecosystems for the ecological risk assessment of pesticides. Ecotoxicology. doi: 10.1007/s10646-009-0402-6 CrossRefGoogle Scholar
  10. de la Cruz E, Bravo-Durán V, Ramírez F, Castillo LE (2014) Environmental hazards associated with pesticide import into Costa Rica, 1977-2009. J Environ Biol 35(1):43–55Google Scholar
  11. De Zwart D (2002) Observed regularities in species sensitivity distributions for aquatic species. In: Posthuma L, Suter II GW, Traas TP (eds) Species sensitivity distributions in ecotoxicology. Lewis Publishers, FL, USA, pp. 133–154Google Scholar
  12. Diepens NJ, Pfennig S, Van den Brink PJ, Gunnarsson JS, Ruepert C, Castillo LE (2014) Effect of pesticides used in banana and pineapple plantations on aquatic ecosystems in Costa Rica. J Environ Biol 35(1):73–84Google Scholar
  13. Dijksterhuis J, van Doorn T, Samson R, Postma J (2011) Effects of seven fungicides on non-target aquatic fungi. Water Air Soil Pollut 222(1–4):421–425CrossRefGoogle Scholar
  14. Dimitrov MR, Kosol S, Smidt H, Buijse L, Van den Brink PJ, Van Wijngaarden RPA, Brock TCM, Maltby L (2014) Assessing effects of the fungicide tebuconazole to heterotrophic microbes in aquatic microcosms. Sci Total Environ 490:1002–1011CrossRefGoogle Scholar
  15. Echeverría-Sáenz S, Mena F, Pinnock M, Ruepert C et al (2012) Environmental hazards of pesticides from pineapple crop production in the Río Jiménez watershed (Caribbean coast, Costa Rica). Sci Total Env 440:106–114CrossRefGoogle Scholar
  16. Echeverría-Sáenz S, Mena F, Arias-Andrés M, Vargas S, Ruepert C, van den Brink PJ, Castillo LE, Gunnarsson JS. (2016) In situ toxicity and ecological risk assessment of agro-pesticide runoff in the Madre de Dios River in Costa Rica. Environ Sci Pollut Res Give DOI nr.Google Scholar
  17. Environment Canada (2007) EPS 1/RM/25. Biological test method: test for measuring the inhibition of growth using the freshwater macrophyte, ‘Lemna minor’. 2nd Ed. Environmental Technology Centre, Environment Canada. 141 pp.Google Scholar
  18. European Commission (2002) Guidance document on aquatic ecotoxicology in the context of the Directive 91/414/EEC. SANCO 3268/2001 rev.4 final. Brussels. Available from
  19. European Union. Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy Text with EEA relevanceGoogle Scholar
  20. INDER (2016) Characterization of the Limón-Matina Territory. 01 September 2016 (in Spanish)
  21. King J, Alexander F, Brodie J (2013) Regulation of pesticides in Australia: the great barrier reef as a case study for evaluating effectiveness. Agric Ecosyst Environ. doi: 10.1016/j.agee.2012.07.001 CrossRefGoogle Scholar
  22. MAG-S-MINAE-MEIC (2007) Decree no. 33495 Reglamento sobre Registro, Uso y Control de Plaguicidas Sintéticos Formulados, Ingrediente Activo Grado Técnico, Coadyuvantes y Sustancias Afines de Uso Agrícola Gaceta oficial de Costa Rica. Published the 10th of January of 2007.Google Scholar
  23. MAG-S-MTSS-MINAE (2014) Decreto N° 38713 Prohibición del registro, importación, exportación, fabricación, formulación, almacenamiento, distribución, transporte, reempaque, reenvase, manipulación, venta, mezcla, uso de ingredientes grado técnico y plaguicidas que contengan carbofurán. Gaceta oficial de Costa Rica. Published the 15th of May of 2014.Google Scholar
  24. Maltby L, Blake N, Brock TCM, Van den Brink PJ (2005) Insecticide species sensitivity distributions: the importance of test species selection and relevance to aquatic ecosystems. Env Toxicol Chem 24:379–388CrossRefGoogle Scholar
  25. Maltby L, Blake N, Brock TCM, Van den Brink PJ (2009) Fungicide risk assessment for aquatic ecosystems: importance of interspecific variation, toxic mode of action and exposure regime. Environ Sci Technol 43:7556–7563CrossRefGoogle Scholar
  26. Mena F, Pfennig S, Arias-Andrés M, Márquez-Couturier G, Sevilla A, Protti M (2012) Acute toxicity and cholinesterase inhibition of the nematicide ethoprophos in larvae of gar Atractosteus Tropicus (Semionotiformes: Lepisosteidae). Int J Trop Biol 60:361–368Google Scholar
  27. MINAET (2012) Resolution N° R-635-2011- MINAET Procedimiento general y lineamientos a seguir por parte del MINAET para la Evaluación de Riesgo Ambiental (ERA) para el Registro de los Plaguicidas Sintéticos Formulados. Gaceta oficial de Costa Rica. Published the 15th of February of 2012Google Scholar
  28. OECD (2004) Guidelines for the testing of chemicals, Section 2, test no. 202: Daphnia sp. acute immobilisation test. doi: 10.1787/9789264069947-enGoogle Scholar
  29. Posthuma L, Suter WG II, Traas TP (2002) Chapter 1. General introduction to species sensitivity distributions. In: Posthuma L, Suter II GW, Traas TP (eds) Species sensitivity distributions in ecotoxicology. Lewis Publishers, FL, USA, pp. 3–9Google Scholar
  30. Rämö R, van den Brink PJ, Ruepert C, Castillo LE, Gunnarsson JS (2016) Environmental risk assessment of pesticides in the River Madre de Dios, Costa Rica using PERPEST, SSD, and msPAF models. Environ Sci Pollut Res. doi: 10.1007/s11356-016-7375-9 (this special issue) CrossRefGoogle Scholar
  31. Rico A, Van den Brink PJ (2014) Probabilistic risk assessment of veterinary medicines applied to four major aquaculture species produced in Asia. Sci Total Environ. doi: 10.1016/j.scitotenv.2013.08.063 CrossRefGoogle Scholar
  32. Schreinemachers P, Tipraqsa P (2012) Agricultural pesticides and land use intensification in high, middle and low income countries. Food Policy. doi: 10.1016/j.foodpol.2012.06.003 CrossRefGoogle Scholar
  33. Shahidul Islam M, Tanaka M (2004) Impacts of pollution on coastal and marine ecosystems including coastal and marine fisheries and approach for management: a review and synthesis. Mar Pollut Bull 48(7–8):624–649CrossRefGoogle Scholar
  34. U.S. Environmental Protection Agency (2016) ECOTOX user guide: ECOTOXicology database system. Version 4.0. Available:
  35. Van den Brink PJ, Blake N, Brock TCM, Maltby L (2006) Predictive value of species sensitivity distributions for effects of herbicides in freshwater ecosystems. Journal of Human and Ecological Risk Assessment 12:645–674CrossRefGoogle Scholar
  36. Van Vlaardingen P, Traas T, Wintersen A, Aldenberg T (2004) A program to calculate hazardous concentrations and fraction affected, based on normally distributed toxicity data. 68. Bilthoven, the Netherlands: National Institute for Public Health and the Environment (RIVM)Google Scholar
  37. Waterhouse J, Brodie J, Lewis S, Mitchell A (2012) Quantifying the sources of pollutants in the great barrier reef catchments and the relative risk to reef ecosystems. Mar Pollut Bull. doi: 10.1016/j.marpolbul.2011.09.031 CrossRefGoogle Scholar
  38. Wightwick AM, Bui AD, Zhang P et al (2012) Environmental fate of fungicides in surface waters of a horticultural-production catchment in southeastern Australia. Arch Environ Contam Toxicol. doi: 10.1007/s00244-011-9710-y CrossRefGoogle Scholar
  39. Xin Z, Wenchao Z, Zhenguang Y et al (2015) Species sensitivity analysis of heavy metals to freshwater organisms. Ecotoxicology. doi: 10.1007/s10646-015-1500-2 CrossRefGoogle Scholar
  40. Yáñez-Arancibia A, Day JW, Sánchez-Gil P et al (2014) The basis for restoration and management of a tropical coastal lagoon. Pacific coast of Mexico Ecological Engineering. doi: 10.1016/j.ecoleng.2013.03.007 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • M Arias-Andrés
    • 1
    • 2
  • R Rämö
    • 3
  • F Mena Torres
    • 1
  • R Ugalde
    • 1
  • L Grandas
    • 1
  • C Ruepert
    • 1
  • L E Castillo
    • 1
  • P J Van den Brink
    • 4
    • 5
  • J S Gunnarsson
    • 3
  1. 1.Instituto Regional de Estudios en Sustancias Tóxicas (IRET)Universidad Nacional de Costa RicaHerediaCosta Rica
  2. 2.Department of Experimental LimnologyLeibniz-Institute of Freshwater Ecology and Inland FisheriesBerlinGermany
  3. 3.Department of Ecology, Environment and Plant Sciences (DEEP)Stockholm UniversityStockholmSweden
  4. 4.Alterra, Wageningen University and Research CentreWageningenThe Netherlands
  5. 5.Department of Aquatic Ecology and Water Quality ManagementWageningen University, Wageningen University and Research centreWageningenThe Netherlands

Personalised recommendations