Advertisement

Environmental Science and Pollution Research

, Volume 23, Issue 24, pp 24694–24710 | Cite as

Biology and management of two important Conyza weeds: a global review

  • Ali Ahsan BajwaEmail author
  • Sehrish Sadia
  • Hafiz Haider Ali
  • Khawar Jabran
  • Arslan Masood Peerzada
  • Bhagirath Singh Chauhan
Review Article

Abstract

Weed management is one of the prime concerns for sustainable crop production. Conyza bonariensis and Conyza canadensis are two of the most problematic, noxious, invasive and widespread weeds in modern-day agriculture. The biology, ecology and interference of C. bonariensis and C. canadensis have been reviewed here to highlight pragmatic management options. Both these species share a unique set of biological features, which enables them to invade and adapt a wide range of environmental conditions. Distinct reproductive biology and an efficient seed dispersal mechanism help these species to spread rapidly. Ability to interfere strongly and to host crop pests makes these two species worst weeds of cropping systems. These weed species cause 28–68 % yield loss in important field crops such as soybean and cotton every year. These weeds are more prevalent in no-till systems and, thus, becoming a major issue in conservation agriculture. Cultural practices such as crop rotations, seed rate manipulation, mulching, inter-row tillage and narrow row spacing may provide an effective control of these species. However, such methods are not feasible and applicable under all types of conditions. Different herbicides also provide a varying degree of control depending on crop, agronomic practices, herbicide dose, application time and season. However, both these species have evolved resistance against multiple herbicides, including glyphosate and paraquat. The use of alternative herbicides and integrated management strategies may provide better control of herbicide-resistant C. bonariensis and C. canadensis. Management plans based on the eco-biological interactions of these species may prove sustainable in the future.

Keywords

Allelopathy Biological invasion Chemical control Conyza bonariensis Conyza canadensis Herbicide resistance Weed management 

Notes

Acknowledgement

Authors acknowledge that there was no financial support for this manuscript.

References

  1. Abdel-Gawad AM (2014) Ecology and allelopathic control of Brassica tournfortii in reclaimed areas of the Nile Delta, Egypt. Turk J Bot 38:347–357. doi: 10.3906/bot-1302-29 CrossRefGoogle Scholar
  2. Al-Ghamdi KM, Stewart RK, Boivin G (1993) Note on overwintering of Polynema pratensiphagum (Walley) (hymenoptera: Mymaridae) in southwestern Quebec. Can Entomol 125:407–408. doi: 10.4039/Ent125407-2 CrossRefGoogle Scholar
  3. Anastasiu P, Negrean G (2007) Plant invaders in Romania. University of Bucharest, Bucharest, RomaniaGoogle Scholar
  4. AVH (2016) Australia’s virtual herbarium. http://avh.chah.org.au/. Accessed 4 January 2016
  5. Bajwa AA (2014) Sustainable weed management in conservation agriculture. Crop Protec 65:105–113. doi: 10.1016/j.cropro.2014.07.014 CrossRefGoogle Scholar
  6. Bajwa AA, Khalid S, Sadia S, Nabeel M, Nafees W (2013) Influence of combinations of allelopathic water extracts of different plants on wheat and wild oat. Pak J Weed Sci Res 19:157–166Google Scholar
  7. Bajwa AA, Jabran K, Shahid M, Ali HH, Chauhan BS, Ehsanullah (2015a) Eco-biology and Management of Echinochloa crus-galli. Crop Protec 75:151–162. doi: 10.1016/j.cropro.2015.06.001 CrossRefGoogle Scholar
  8. Bajwa AA, Mahajan G, Chauhan BS (2015b) Nonconventional Weed Management strategies for modern agriculture. Weed Sci 63:723–747. doi: 10.1614/WS-D-15-00064.1 CrossRefGoogle Scholar
  9. Baliousis E (2014) Recent data from the flora of the island of Limnos (NE Aegean, Greece): new alien invasive species affecting the agricultural economy of the island. Edin J Bot 71:275–285. doi: 10.1017/S0960428614000110 CrossRefGoogle Scholar
  10. Bebawi FF, Neugebohrn L (1991) A review of plants of northern Sudan with special reference to their uses. Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ) Publisher, Eschborn, GermanyGoogle Scholar
  11. Bordelon BP, Weller SC (1997) Preplant cover crops affect weed and vine growth in first-year vineyards. Hort Sci 32:1040–1043Google Scholar
  12. Brown SM, Whitwell T (1988) Influence of tillage on horseweed (Conyza canadensis). Weed Tech 2:269–270Google Scholar
  13. Bruce JA, Kells JJ (1990) Horseweed (Conyza canadensis) control in no-tillage soybeans (Glycine max) with preplant and preemergence herbicides. Weed Tech 4:642–647Google Scholar
  14. Buhler DD (1992) Population dynamics and control of annual weeds in corn (Zea mays) as influenced by tillage systems. Weed Sci 40:241–248Google Scholar
  15. Buhler DD, Owen MDK (1997) Emergence and survival of horseweed (Conyza canadensis). Weed Sci 45:98–101Google Scholar
  16. Byker HP, Soltani N, Robinson DE, Tardif FJ, Lawton MB, Sikkema PH (2013a) Glyphosate-resistant Canada fleabane [Conyza canadensis (L). Cronq.]: dose response to glyphosate and control with postemergence herbicides in soybean in Ontario. Can J Plant Sci 93:1187–1193. doi: 10.4141/cjps2013-067 CrossRefGoogle Scholar
  17. Byker HP, Soltani N, Robinson DE, Tardif FJ, Lawton MB, Sikkema PH (2013b) Control of glyphosate-resistant Canada fleabane [Conyza canadensis (L.) Cronq.] with preplant herbicide tankmixes in soybean [Glycine max.(L). Merr.]. Can J Plant Sci 93:659–667. doi: 10.4141/cjps2012-320 CrossRefGoogle Scholar
  18. Byker HP, Soltani N, Robinson DE, Tardif FJ, Lawton MB, Sikkema PH (2013c) Control of glyphosate-resistant horseweed (Conyza canadensis) with dicamba applied preplant and postemergence in dicamba-resistant soybean. Weed Tech 27:492–496. doi: 10.1614/WT-D-13-00023.1 CrossRefGoogle Scholar
  19. Calvitti M, Remotti PC (1998) Host preference and performance of Bemisia argentifolii (Homoptera: Aleyrodidae) on weeds in Central Italy. Environ Entomol 27:1350–1356. doi: 10.1093/ee/27.6.1350 CrossRefGoogle Scholar
  20. Chaudhary SA, Parker C, Kasasian L (1981) Weeds of central, southern and eastern Arabian peninsula. Trop Pest Manage 27:181–190. doi: 10.1080/09670878109413649 CrossRefGoogle Scholar
  21. Chauhan BS, Johnson DE (2010) The role of seed ecology in improving weed management strategies in the tropics. Adv Agron 105:221–262. doi: 10.1016/S0065-2113(10)05006-6 CrossRefGoogle Scholar
  22. Comes RD, Bruns VF, Kelley AD (1978) Longivity of certain weed and crop seeds in fresh water. Weed Sci 26:336–344Google Scholar
  23. Cronquist A (1976) Conyza Less. In: Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, Webb DA (eds) Flora Europaea, Plantaginaceae to Compositae (and Rubiaceae). Cambridge University Press, Cambridge, UK, pp. 1–120Google Scholar
  24. Dalazen G, Guedes JVC, Carpintero DL, Stacke RF, Cagliari D (2014) Populatıonal fluctuatıon of Nysius simulans assocıated wıth soybean and haıry fleabane in Brazil. Interciencia 39:391–394Google Scholar
  25. Dauer JT, Mortensen DA, Humston R (2006) Controlled experiments to predict horseweed (Conyza canadensis) dispersal distances. Weed Sci 54:484–489. doi: 10.1614/WS-05-017R3.1 CrossRefGoogle Scholar
  26. Dauer T, Mortensen DA, Luschei EC, Isard SA, Shields E, Van-Gessel MJ (2009) Conyza canadensis Seed ascent in the lower atmosphere. Agricult. Forest Meterol 149:526–534. doi: 10.1016/j.agrformet.2008.10.005 CrossRefGoogle Scholar
  27. Davis VM, Johnson WG (2008) Glyphosate-resistant horseweed (Conyza canadensis) emergence, survival, and fecundity in no-till soybean. Weed Sci 56:231–236. doi: 10.1614/WS-07-093.1 CrossRefGoogle Scholar
  28. Davis VM, Gibson KD, Bauman TT, Weller SC, Johnson WG (2009) Influence of weed management practices and crop rotation on glyphosate-resistant horseweed (Conyza canadensis) population dynamics and crop yield-years III and IV. Weed Sci 57:417–426. doi: 10.1614/WS-09-006.1 CrossRefGoogle Scholar
  29. Davis VM, Kruger GR, Young BG, Johnson WG (2010) Fall and spring preplant herbicide applications influence spring emergence of glyphosate-resistant horseweed (Conyza canadensis). Weed Tech 24:11–119. doi: 10.1614/WT-09-064.1 CrossRefGoogle Scholar
  30. De Prado R, Dominguez C, Tena M (1989) Characterization of triazine-resistant biotypes of common lambsquarters (Chenopodiumalbum), hairy fleabane (Conyza bonaeriensis), and yellow foxtail (Setaria glauca) found in Spain. Weed Sci 37:1–4Google Scholar
  31. De Wet H (2005) Paraquat and glyphosate resistance in Conyza bonariensis in the Western Cape in the Republic of South Africa. Dissertation, Stellenbosch UniversityGoogle Scholar
  32. Dennis MR, Shrestha A, Bushoven J (2013) Evaluation of saflufenacil on glyphosate and paraquat-resistant hairy fleabane (Conyza bonariensis). In: Le Strange M (eds) Proceeding of 65th annual conference of California Weed Science Society, California Weed Science Society, Sacramento, California, pp 19–20Google Scholar
  33. Dinelli G, Marotti I, Bonetti A, Catizone P, Urbano JM, Barnes J (2008) Physiological and molecular bases of glyphosate resistance in Conyza bonariensis biotypes from Spain. Weed Res 48:257–265. doi: 10.1111/j.1365-3180.2008.00623.x CrossRefGoogle Scholar
  34. Djurdjevic L, Mitrovic M, Gajic G, Janic S, Kostic O, Oberan L, Pavlovic P (2011) An allelopathic investigation of the domination of the introduced invasive Conyza canadensis L. Flora 206:921–927. doi: 10.1016/j.flora.2011.06.001 CrossRefGoogle Scholar
  35. Djurdjevic L, Gajić G, Kostić O, Jarić S, Pavlović M, Mitrović M, Pavlović P (2012) Seasonal dynamics of allelopathically significant phenolic compounds in globally successful invader Conyza canadensis L. Plants and associated sandy soil. Flora 207:812–820. doi: 10.1016/j.flora.2012.09.006 CrossRefGoogle Scholar
  36. Edgecombe WS (1970) Weeds of Lebanon. American University of Beirut, Beirut, LebanonGoogle Scholar
  37. Eubank TW, Poston DH, Nandula VK, Koger CH, Shaw DR, Reynolds DB (2008) Glyphosate-resistant horseweed (Conyza canadensis) control using glyphosate-, paraquat-, and glufosinate-based herbicide programs. Weed Tech 22:16–21. doi: 10.1614/WT-07-038.1 CrossRefGoogle Scholar
  38. Farooq M, Jabran K, Cheema ZA, Wahid A, Siddique KHM (2011) The role of allelopathy in agricultural pest management. Pest Manag Sci 6:493–506. doi: 10.1002/ps.2091 CrossRefGoogle Scholar
  39. Farooq M, Bajwa AA, Cheema SA, Cheema ZA (2013) Application of allelopathy in crop production. Int J Agri Biol 15:1367–1378Google Scholar
  40. Farr DF, Bills GF, Chamuris GP, Rossman AY (1989) Fungi on plants and plant products in the United States. The American Phytopathological Society, St. Paul, MinnesotaGoogle Scholar
  41. Fatehi J, Hedjaroude GA, Ershad D (1993) Studies on Septoria species in Iran-I. Iran J Plant Pathol 29:25–28Google Scholar
  42. Felton WL, Wicks GA, Welsby SM (1994) A survey of fallow practices and weed floras in wheat stubble and grain sorghum in northern new South Wales. Aus J Exp Agri 34:229–236. doi: 10.1071/EA9940229 CrossRefGoogle Scholar
  43. Ford L, Soltani N, McFadden A, Nurse RE, Robinson DE, Sikkema PH (2014) Control of Canada fleabane (Conyza canadensis) with glyphosate DMA/2, 4-D choline applications in corn (Zea mays). Agric Sci:77–83. doi: 10.4236/as.2014.51009
  44. Frankton C, Mulligan GA (1987) Weeds of Canada. Ministry of Supply and Services Canada. NC Press Limited, Toronto, Ontario, CanadaGoogle Scholar
  45. Gibson KD, Johnson WG, Hillger DE (2005) Farmer perceptions of problematic corn and soybean weeds in Indiana. Weed Tech 19:1065–1070. doi: 10.1614/WT-04-309R:1 CrossRefGoogle Scholar
  46. Grbelja J, Eric Z, Jeknic Z (1988) Erigeron canadensis L.-a potential source of infection by the tomato bushy stunt virus for cultivated plants. Frag Herbol Jugos 17:95–99Google Scholar
  47. Green TD (2010) The ecology of Fleabane (Conyza spp.). Disssertation, School of Environmental and Rural Science, Faculty of Arts and Sciences, University of New England, New South Wales, AustraliaGoogle Scholar
  48. Hao JH, Qiang S, Liu QQ, Cao F (2009) Reproductive traits associated with invasiveness in Conyza sumatrensis. J Syst Evol 47:245–254. doi: 10.1111/j.1759-6831.2009.00019.x CrossRefGoogle Scholar
  49. Hartz TK, DeVay JE, Elmore CL (1993) Solarization is an effective soil disinfestation technique for strawberry production. Hort Sci 28:104–106Google Scholar
  50. Heap I (2014a) Global perspective of herbicide-resistant weeds. Pest Manag Sci 70:1306–1315. doi: 10.1002/ps.3696 CrossRefGoogle Scholar
  51. Heap I (2014b) Herbicide resistant weeds. In: Pimentel D, Peshin R (eds) Integrated pest management. Springer-Verlag, Dordrecht, Netherlands, pp. 281–301CrossRefGoogle Scholar
  52. Hollowell JE, Shew BB, Cubeta MA, Wilcut JW (2003) Weed species as hosts of Sclerotinia minor in peanut fields. Plant Dis 87:197–199. doi: 10.1094/PDIS.2003.87.2.197 CrossRefGoogle Scholar
  53. Holm LG, Pancho JV, Herberger JP, Plucknett DL (1979) A geographical atlas of world weeds. John Wiley & Sons Inc, New York, USAGoogle Scholar
  54. Holm LG, Doll J, Holm E, Pancho JV, Herberger JP (1997) World weeds: natural histories and distribution. John Wiley & Sons Inc, New York, USAGoogle Scholar
  55. Horowitz M, Regev Y, Herzlinger G (1983) Solarization for weed control. Weed Sci 31:170–179Google Scholar
  56. Hu G, Zhang ZH (2012) Aqueous tissue extracts of Conyza canadensis inhibit the germinati n and shoot growth of three native herbs with no autotoxic effects. Planta Daninha 31:805–811. doi: 10.1590/S0100-83582013000400006 CrossRefGoogle Scholar
  57. ISHRW (2015a) International survey on herbicide resistant weeds. http://weedscience.org/summary/species.aspx?WeedID=60. Accessed 29 September 2015
  58. ISHRW (2015b) International survey on herbicide resistant weeds. http://weedscience.org/summary/species.aspx?WeedID=61. Accessed 12 December 2015
  59. Jabran K, Mahajan G, Sardana V, Chauhan BS (2015) Allelopathy for weed control in agricultural systems. Crop Protec 72:57–65. doi: 10.1016/j.cropro.2015.03.004 CrossRefGoogle Scholar
  60. Jung JS, Lee JS, Choi CD, Cheung JD (1998) A study on sod culture using water foxtail (Alopecurus aequalis var. amurensis) in apple orchard. Kor J Weed Sci 18:128–135Google Scholar
  61. Karlsson LM, Milberg P (2007) Comparing after ripening response and germination requirements of Conyza canadensis and C. bonariensis (Asteracae) through logistics functions. Weed Res 47:433–441. doi: 10.1111/j.1365-3180.2007.00576.x CrossRefGoogle Scholar
  62. Khalid S (1995) Weeds of Pakistan. Compositae. National Herbarium Islamabad, National Agricultural Research Centre, Islamabad, PakistanGoogle Scholar
  63. Khan I, Marwat KB, Khan IA, Ali H, Dawar K, Khan H (2011) Invasive weeds of southern districts of Khyber Pakhtunkhwa-Pakistan. Pak J Weed Sci Res 17:161–174Google Scholar
  64. Khan RU, Mehmood S, Khan SU, Subhan M (2013) Ethnobotanical study of common weed flora of sugarcane in district Bannu, Khyber Pakhtunkhawa. Pak J Med Plant Stud 1:49–78Google Scholar
  65. Kim HS, Ihm BS, Lee JS, Park SH (2003) Ecological studies on the vegetation of abandoned salt field in Gasado. Kor J Environ Ecol 17:123–132Google Scholar
  66. Kleinman Z, Ben-Ami G, Rubin B (2015) From sensitivity to resistance–factors affecting the response of Conyza spp. to glyphosate. Pest Manag Sci. doi: 10.1002/ps.4187 Google Scholar
  67. Koger CH, Poston DH, Hayes RM, Montgomery RF (2004) Glyphosate-resistant horseweed (Conyza canadensis) in Mississippi. Weed Tech 18:820–825. doi: 10.1614/WT-03-218R CrossRefGoogle Scholar
  68. Koger CH, Shaner DL, Henry WB, Nadler-Hassar T, Thomas WE, Wilcut JW (2005) Assessment of two nondestructive assays for detecting glyphosate resistance in horseweed (Conyza canadensis). Weed Sci 53:559–566. doi: 10.1614/WS-05-010R.1 CrossRefGoogle Scholar
  69. Kong LD, Abliz Z, Zhou CX, Li LJ, Cheng CHK, Tan RX (2001) Glycosides and xanthine oxidase inhibitors from Conyza bonariensis. Phytochemistry 58:645–651. doi: 10.1016/S0031-9422(01)00176-5 CrossRefGoogle Scholar
  70. Lamego FP, Vidal RA (2008) Resistance to glyphosate in Conyza bonariensis and Conyza canadensis biotypes in Rio Grande do Sul, Brazil. Planta Daninha 26:467–471. doi: 10.1590/S0100-83582008000200024 CrossRefGoogle Scholar
  71. Lamego FP, Kaspary TE, Ruchel Q, Gallon M, Basso CJ, Santi AL (2013) Management of glyphosate resistant Conyza bonariensis: winter cover crops and herbicides in soybean pre-seeding. Planta Daninha 31:433–442. doi: 10.1590/S0100-83582013000200022 CrossRefGoogle Scholar
  72. Lanfranco E (1976) Report on the present situation of the Maltese flora. Malt Nat 2:69–80Google Scholar
  73. Latson LN, Jenkins JN, Parrott WL, Maxwell FG (1977) Behavior of the tarnished plant bug, Lygus lineolarison, on cotton, Gossypium hirsutum L., and horseweed, Erigeron canadensis. Technical bulletin 85. Mississippi Agricultural & Forestry Experiment Station, Mississippi, USAGoogle Scholar
  74. Lazaroto CA, Fleck NG, Vidal RA (2008) Biology and ecophysiology of hairy fleabane (Conyza bonariensis) and horseweed (Conyza canadensis). Ciência Rural 38:852–860. doi: 10.1590/S0103-84782008000300045 CrossRefGoogle Scholar
  75. Lehoczki E, Laskay G, Pölös E, Mikulás J (1984) Resistance to triazine herbicides in horseweed (Conyza canadensis). Weed Sci 32:669–674Google Scholar
  76. Lehoczki E, Pölös E, Laskay G, Farkas T (1985) Chemical compositions and physical states of chloroplast lipids related to atrazine resistance in Conyza canadensis L. Plant Sci 42:19–24. doi: 10.1016/0168-9452(85)90023-8 CrossRefGoogle Scholar
  77. Leroux GD, Benoit DL, Banville S (1996) Effect of crop rotations on weed control, Bidens cernua and Erigeron canadensis populations, and carrot yields in organic soils. Crop Protec 15:171–178. doi: 10.1016/0261-2194(95)00118-2 CrossRefGoogle Scholar
  78. Lind EM, Tallantire AC (1971) Some flowering plants of Uganda. Oxford University Press, Nairobi, KenyaGoogle Scholar
  79. Liu MJ, Xu GF, Jıang H (2008) Bioassay of allelopathy in ınvasive plant Conyza bonariensis. J Henan Agric Sci 6:24–29Google Scholar
  80. Mabrouk S, Elaissi A, Jannet HB, Harzallah-Skhiri F (2011) Chemical composition of essential oils from leaves, stems, flower heads and roots of Conyza bonariensis L. From Tunisia. Nat Prod Res 25:77–84. doi: 10.1080/14786419.2010.513685 CrossRefGoogle Scholar
  81. Malatji MW (2013) Allelopathic potential of Conyza bonariensis. Dissertation. Department of Plant Production and Soil Science, University of PretoriaGoogle Scholar
  82. Matzrafi M, Lazar TW, Sibony M, Rubin B (2015) Conyza species: distribution and evolution of multiple target-site herbicide resistances. Planta 242:259–267. doi: 10.1007/s00425-2306-4 CrossRefGoogle Scholar
  83. Mellendorf TG, Young JM, Matthews JL, Young BG (2013) Influence of plant height and glyphosate on saflufenacil efficacy on glyphosate-resistant horseweed (Conyza canadensis). Weed Tech 27:463–467. doi: 10.1614/WT-D-13-00004.1 CrossRefGoogle Scholar
  84. Michael PW (1977) Some weedy species of Amaranthus (amaranths) and Conyza/erigeron (fleabanes) naturalized in the Asian-Pacific region. In: Annonymous (ed) Proceedings of the 6th Asian-Pacific weed science society conference. Asian-Pacific Weed Science Society, Medan, Indonesia, pp. 87–95Google Scholar
  85. Moreira MS, Nicolai M, Carvalho SJP, Christoffoleti PJ (2007) Glyphosate-resistance in Conyza canadensis and C. bonariensis. Planta Daninha 25:157–164. doi: 10.1590/S0100-83582007000100017 CrossRefGoogle Scholar
  86. Moretti ML, Hanson BD, Hembree KJ, Shrestha A (2013) Glyphosate resistance is more variable than paraquat resistance in a multiple-resistant hairy fleabane (Conyza bonariensis) population. Weed Sci 61:396–402. doi: 10.1614/WS-D-12-00201.1 CrossRefGoogle Scholar
  87. Morita H (1997) Handbook of arable weeds of Japan. Kumiai Chemical Industry Co. Ltd, Tokyo, JapanGoogle Scholar
  88. Mueller TC, Massey JH, Hayes RM, Main CL, Stewart CN (2003) Shikimate accumulates in both glyphosate-sensitive and glyphosate-resistant horseweed (Conyza canadensis L. Cronq.). J Agric Food Chem 51:680–684. doi: 10.1021/jf026006k CrossRefGoogle Scholar
  89. Nandula VK, Eubank TW, Poston DH, Kogger CH, Reddy KN (2006) Factors affecting germination of horseweed (Conyza canadensis). Weed Sci 54:898–902. doi: 10.1614/WS-06-006R2.1 CrossRefGoogle Scholar
  90. Negrean G, Ioana C (2012) Conyza bonariensis, a new plant with invasive character in Romanian flora. Biologie 17:743–748Google Scholar
  91. Norsworthy JK, McClelland M, Griffith GM (2009) Conyza canadensis (L.) Cronquist response to pre-plant application of residual herbicides in cotton (Gossypium hirsutum L.). Crop Protec 28:62–67. doi: 10.1016/j.cropro.2008.08.012 CrossRefGoogle Scholar
  92. Osten VA, Walker SR, Storrie A, Widderick M, Moylan P, Robinson GR, Galea K (2007) Survey of weed flora and management relative to cropping practices in the north-eastern grain region of Australia. Aus J Exp Agri 47:57–70. doi: 10.1071/ea05141 CrossRefGoogle Scholar
  93. Owen MD, Zelaya IA (2005) Herbicide-resistant crops and weed resistance to herbicides. Pest Manag Sci 61:301–311. doi: 10.1002/ps.1015 CrossRefGoogle Scholar
  94. Parker C (1992) Weeds of Bhutan. National Plant Protection Centre, Government of Bhutan, Thimpu, BhutanGoogle Scholar
  95. Paula JM, Vargas L, Agostinetto D, Nohatto MA (2011) Management of Glyphosate-Resistant Conyza bonariensis. Planta Daninha 29:217–227. doi: 10.1590/S0100-83582011000100024 CrossRefGoogle Scholar
  96. Peerzada AM, Bajwa AA, Ali HH, Chauhan BS (2016) Biology, impact, and management of Echinochloa colona (L.) link. Crop Protec 83:56–66. doi: 10.1016/j.cropro.2016.01.011 CrossRefGoogle Scholar
  97. Pölös E, Mikulas J, Szigeti Z, Matkovics B, Párducz Á, Lehoczki E (1988) Paraquat and atrazine co-resistance in Conyza canadensis (L.) Cronq. Pesticide Biochem Physiol 30:142–154CrossRefGoogle Scholar
  98. Przepiorkowski T, Gorski SF (1994) Influence of rye (Secale cereale) plant residues on germination and growth of three triazine-resistant and susceptible weeds. Weed Tech 8:744–747Google Scholar
  99. Queiroz SCN, Cantrell CL, Duke SO, Wedge DE, Nandula VK, Moraes RM, Cerdeira AL (2012) Bioassay directed ısolation and ıdentification of phytotoxic and fungitoxic acetylenes from Conyza canadensis. J Agri Food Chem 60:5893–5898. doi: 10.1021/jf3010367 CrossRefGoogle Scholar
  100. Regehr DL, Bazzaz FA (1979) The population dynamics of Erigeron canadensis, a successional winter annual. J Ecol 67:923–933CrossRefGoogle Scholar
  101. Reutelingsperger LFPM (2000) Conyza sumatrensis: starting to spread into the Netherlands? Gorteria 26:224–226Google Scholar
  102. Rios SI, Wright SD, Banuelos G, Wilson K (2013) Horseweed (Conyza canadensis) control in almond orchards with pre- and post-emergence herbicides in the southern San Joaquin Valley. In: Le Strange M (eds) Proceeding of 65th annual conference of California Weed Science Society, California Weed Science Society, Sacramento, California, pp 20–21Google Scholar
  103. Rollin MJ, Tan D (2004) First report of glyphosate resistant flax-leaf fleabane from the western Darling Downs. In: Walker S, Widderick M, Wu WH (eds) Proceedings of Workshop of Department of Primary Industries and Fisheries, Primary Industries and Fisheries, Toowoomba, Australia, pp 7–15Google Scholar
  104. Sansom M, Saborido AA, Dubois M (2013) Control of Conyza spp. with glyphosate- a review of the situation in Europe. Plant Prot Sci 49:44–53Google Scholar
  105. Shaaltiel Y, Gressel J (1985) Mechanism of paraquat tolerance in Conyza bonariensis and in Lolium perenne. Phytoparasitica 13:232–232Google Scholar
  106. Shaukat SS, Munir N, Siddiqui IA (2003) Allelopathic responses of Conyza canadensis (L.) Cronquist: a cosmopolitan weed. Asian J Plant Sci 14:1034–1039Google Scholar
  107. Shields EJ, Dauer JT, VanGessel MJ, Neumann G (2006) Horseweed (Conyza canadensis) seed collected in the planetary boundary layer. Weed Sci 54:1063–1067. doi: 10.1614/WS-06-097R1.1 CrossRefGoogle Scholar
  108. Shrestha A (2009) Potential of a black walnut (Juglans nigra) extract product (NatureCur®) as a pre-and post-emergence bioherbicide. J Sustain Agri 33:810–822. doi: 10.1080/10440040903303397 CrossRefGoogle Scholar
  109. Shrestha A, Hembree K, Wright S (2008) Biology and Management of Horseweed and Hairy Fleabane in California. Publication No. 8314. University of California, Division of Agricultural and Natural Resources, Fresno, CaliforniaGoogle Scholar
  110. Shrestha A, Fidelibus MW, Alcorta M, Hanson BD (2010a) Growth, phenology, and intra-specific competition between glyphosate-resistant and glyphosate-susceptible horseweed (Conyza canadensis) in the San Joaquin Valley of California. Weed Sci 58:147–153. doi: 10.1614/WS-D-09-00022.1 CrossRefGoogle Scholar
  111. Shrestha A, Fidelibus MW, Alcorta MF, Cathline KA (2010b) Threshold of horseweed (Conyza canadensis) in an established ‘Thompson seedless’ vineyard in the San Joaquin Valley of California. Int J Fruit Sci 10:301–308. doi: 10.1080/15538362.2010.510424 CrossRefGoogle Scholar
  112. Sida O (2003) Conyzatriloba, new to Europe, and Conyza bonariensis, new to the Czech Republic. Preslia 75:249–254Google Scholar
  113. Silic C, Solic ME (1999) Contribution to the knowledge of the neophytic flora in the Biokovo area (Dalmatia, Croatia). Nat Croa 8:109–116Google Scholar
  114. Silva D, Vargas L, Agostinetto D, Mariani F (2014) Glyphosate-resistant hairy fleabane competition in RR® soybean. Bragantia 73:451–457. doi: 10.1590/1678-4499.0200 CrossRefGoogle Scholar
  115. Skroch WA, Catanzaro CJ, DeHertogh AA, Gallitano LB (1994) Preemergence herbicide evaluations on selected spring and summer flowering bulbs and perennials. J Environ Hort 12:80–82Google Scholar
  116. Smisek A (1995) The evolution of resistance to paraquat in populations of Erigeron canadensis L. Dissertation. University of Western OntarioGoogle Scholar
  117. Smisek A, Doucet C, Jones M, Weaver S (1998) Paraquat resistance in horseweed (Conyza canadensis) and Virginia pepperweed (Lepidium virginicum) from Essex County, Ontario. Weed Sci 46:200–204Google Scholar
  118. South DB (2000) Tolerance of southern pine seedlings to clopyralid. South J Appl Forest 24:51–56Google Scholar
  119. Steckel LE, Gwathmey CO (2009) Glyphosate-resistant horseweed (Conyza canadensis) growth, seed production, and interference in cotton. Weed Sci 57:346–350. doi: 10.1614/WS-08-127.1 CrossRefGoogle Scholar
  120. Steinmaus SJ, Prather TS, Holt JS (2000) Estimation of base temperatures for nine weed species. J Exp Bot 51:275–286. doi: 10.1093/jexbot/51.343.275 CrossRefGoogle Scholar
  121. Szigeti Z, Lehoczki E (2003) A review of physiological and biochemical aspects of resistance to atrazine and paraquat in Hungarian weeds. Pest Manag Sci 59:451–458. doi: 10.1002/ps.647 CrossRefGoogle Scholar
  122. Tanaka Y, Chisaka H, Saka H (1986) Movement of paraquat in resistant and susceptible biotypes of Erigeron philadelphicus and E. canadensis. Physiol Plant 66:605–608. doi: 10.1111/j.1399-3054.1986.tb05587.x CrossRefGoogle Scholar
  123. Thabit RAS, Cheng XR, Al-Haj N, Rahman MDRT, Wei LEG (2014) Antioxidant and Conyza bonariensis- a review. Europ Acad Res 2:8454–8474Google Scholar
  124. Thebaud C, Finzi AC, Affre L, Debussche M, Escarre J (1996) Assessing why two ıntroduced Conyza differ in their ability to invade Mediterranean old fields. Ecol 77:791–804. doi: 10.2307/2265502 CrossRefGoogle Scholar
  125. Tozzi E, Beckie H, Weiss R, Gonzalez-Andujar JL, Storkey J, Cici SZH, Acker RC (2014) Seed germination response to temperature for a range of international populations of Conyza canadensis. Weed Res 54:178–185. doi: 10.1111/wre.12065 CrossRefGoogle Scholar
  126. Travlos IS, Chachalis D (2010) Glyphosate-resistant hairy fleabane (Conyza bonariensis) is reported in Greece. Weed Tech 24:569–573. doi: 10.1614/WT-D-09-00080.1 CrossRefGoogle Scholar
  127. Travlos IS, Chachalis D (2013) Relative competitiveness of glyphosate-resistant and glyphosate-susceptible populations of hairy fleabane, Conyza bonariensis. J Pest Sci 86:345–351. doi: 10.1007/s10340-012-0446-x CrossRefGoogle Scholar
  128. Trezzi MM, Balbinot-Jr AA, Benin G, Debastiani F, Patel F, Miotto-Jr E (2013) Competitive ability of soybean cultivars with horseweed (Conyza bonariensis). Planta Daninha 31:543–550. doi: 10.1590/S0100-83582013000300006 CrossRefGoogle Scholar
  129. Trezzi MM, Vidal RA, Patel F, Miotto E, Debastiani F, Balbinot AA, Mosquen R (2015) Impact of Conyza bonariensis density and establishment period on soyabean grain yield, yield components and economic threshold. Weed Res 55:34–41. doi: 10.1111/wre.12125 CrossRefGoogle Scholar
  130. USDA Natural Resources Conservation Service (2012) Ecology and management of Canadian horseweed (Conyza canadensis). Technical Note, NRCS Plant Materials Center Aberdeen, IdahoGoogle Scholar
  131. USDA-ARS (2004) Germplasm Resources Information Network (GRIN). Online Database, National Germplasm Resources Laboratory, Beltsville, USAGoogle Scholar
  132. Vila-Aiub MM, Vidal RA, Balbi MC, Gundel PE, Trucco F, Ghersa CM (2008) Glyphosate-resistant weeds of south American cropping systems: an overview. Pest Manag Sci 64:366–371. doi: 10.1002/ps.1488 CrossRefGoogle Scholar
  133. Waggoner BS, Mueller TC, Bond JA, Steckel LE (2011) Control of glyphosate-resistant horseweed (Conyza canadensis) with saflufenacil tank mixtures in no-till cotton. Weed Tech 25:310–315. doi: 10.1614/WT-D-10-00161.1 CrossRefGoogle Scholar
  134. Walker SR, Taylor IN, Milne G, Osten VA, Hoque Z, Farquharson RJ (2005) A survey of management and economic impact of weeds in dryland cotton cropping systems of sub-tropical Australia. Aus J Exp Agri 45:79–91. doi: 10.1071/EA03189 CrossRefGoogle Scholar
  135. Weaver SE (2001) The biology of Canadian weeds. 115. Conyza canadensis. Can J Plant Sci 81:867–875. doi: 10.4141/P00-196 CrossRefGoogle Scholar
  136. Weaver S, Downs M, Neufeld B (2004) Response of paraquat-resistant and -susceptible horseweed (Conyza canadensis) to diquat, linuron, and oxyfluorfen. Weed Sci 52:549–553. doi: 10.1614/WS-03-102R CrossRefGoogle Scholar
  137. Werth J, Boucher L, Thornby D, Walker S, Charles G (2013) Changes in weed species since the introduction of glyphosate-resistant cotton. Crop Pasture Sci 64:791–798. doi: 10.1071/CP13167 Google Scholar
  138. Widderick M, Walker S, Cook T (2012) Flaxleaf fleabane (Conyza bonariensis)-strategic solutions using best management practice. Pak J Weed Sci Res 18:687–693Google Scholar
  139. Wiese AF, Salisbury CD, Bean BW (1995) Downy brome (Bromus tectorum), jointed goatgrass (Aegilops cylindrica), and horseweed (Conyza canadensis) control in fallow. Weed Tech 9:249–254Google Scholar
  140. Wilson JS, Worsham AD (1988) Combinations of nonselective herbicides for difficult to control weeds in no-till corn (Zea mays), and soybeans (Glycine max). Weed Sci 36:648–652Google Scholar
  141. Wu H, Walker S, Rollin MJ, Tan DKY, Robinson G, Werth J (2007) Germination, persistence, and emergence of flaxleaf fleabane (Conyza bonariensis [L.] Cronquist). Weed Biol Manage 7:192–199. doi: 10.1111/j.1445-6664.2007.00256.x CrossRefGoogle Scholar
  142. Wu H, Walker S, Robinson G (2008) Chemical control of flaxleaf fleabane (Conyza bonariensis (L.) Cronquist) in winter fallows. Plant Prot Quart 23:162–165Google Scholar
  143. Wu H, Walker S, Robinson G, Coombes N (2010) Control of flaxleaf fleabane (Conyza bonariensis) in wheat and sorghum. Weed Tech 24:102–107. doi: 10.1614/WT-09-043.1 CrossRefGoogle Scholar
  144. Xie FY, Yao LX (1989) A study on Dorylus orientalis Westwood. Insect Knowledge 26:291–293Google Scholar
  145. Yamashita OM, Guimarães SC, Cavenaghi AL (2011) Germination of Conyza canadensis and Conyza bonariensis seeds as a function of light quality. Planta Daninha 29:737–743. doi: 10.1590/S0100-83582011000400003 CrossRefGoogle Scholar
  146. Yamasue Y, Kamiyama K, Hanioka Y, Kusanagi T (1992) Paraquat resistance and its inheritance in seed germination of the foliar-resistant biotypes of Erigeron canadensis L. and E. sumatrensis Retz. Pest Biochem Physiol 44:21–27. doi: 10.1016/0048-3575(92)90005-K CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Ali Ahsan Bajwa
    • 1
    • 2
    Email author
  • Sehrish Sadia
    • 3
  • Hafiz Haider Ali
    • 4
  • Khawar Jabran
    • 5
  • Arslan Masood Peerzada
    • 2
  • Bhagirath Singh Chauhan
    • 2
  1. 1.School of Agriculture and Food SciencesThe University of QueenslandGattonAustralia
  2. 2.The Centre for Plant Science, Queensland Alliance for Agriculture and Food Innovation (QAAFI)The University of QueenslandGatton/ToowoombaAustralia
  3. 3.College of Life SciencesBeijing Normal UniversityBeijingChina
  4. 4.Department of Agronomy, University College of AgricultureUniversity of SargodhaSargodhaPakistan
  5. 5.Department of Plant Protection, Faculty of Agriculture and Natural SciencesDüzce UniversityDüzceTurkey

Personalised recommendations