Advertisement

Environmental Science and Pollution Research

, Volume 23, Issue 24, pp 25412–25426 | Cite as

The influence of bottom boundary layer hydrodynamics on sediment focusing in a contaminated bay

  • Neil D. Graham
  • Damien Bouffard
  • Jean-Luc Loizeau
Research Article

Abstract

Understanding the dynamics and fate of particle bound contaminants is important for mitigating potential environmental, economic and health impacts linked to their presence. Vidy Bay, Lake Geneva (Switzerland), is contaminated due to the outfall and overflow from the wastewater treatment plant of the City of Lausanne. This study was designed to investigate the fate of particle-bound contaminants with the goal of providing a more complete picture of contaminant pathways within the bay and their potential spread to the main basin. This goal was achieved by investigating the sediment transport dynamics, using sediment traps and radionuclide tracers, and ascertaining how local bottom-boundary hydrodynamic conditions (temperature, turbidity, current velocity and direction) influence these dynamics. Results of the study indicated that sedimentation rates and lateral advections increased vertically with proximity to the lakebed and laterally with proximity to shore, indicating the presence of sediment focusing in the bay. Hydrodynamic measurements showed the persistent influence of a gyre within the bay, extending down to the lake bed, while just outside of the bay circulation was influenced by the seasonal patterns of the main basin. Calculated mean displacement distances in the bay indicated that suspended particles can travel ∼3 km per month, which is 1.7 times the width of the Vidy Bay gyre. This results in a residence time of approximately 21 days for suspended particles, which is much greater than previously modelled results. The calculated mobility Shield parameter never exceeded the threshold shear stress needed for resuspension in deeper parts of the bay. In such, increased lateral advections to the bay are not likely due to local resuspension but rather external particle sources, such as main basin or shallow, littoral resuspensions. These external sources coupled with an increased residence time and decreased current velocity within the bay are the precipitating factors in sediment focusing. While the spread of contaminants from the bay may occur through the transport of fine suspended sediments in shallower zones of the bay (<60 m) by longshore littoral currents, results suggest that particle-bound contaminants are likely to remain within the bay.

Keywords

Sediment transport Contaminant Radionuclide Hydrodynamics Bottom boundary layer Gyre 

Notes

Acknowledgements

The authors are thankful and acknowledge the financial support of the Swiss National Science Foundation (Project: PDFMP2-123034). They would also like to thank Ulrich Lemmin and Ahn-Dao Le Thi for their guidance with treatment and interpretation of hydrodynamic data and thank Philippe Arpagaus for his vital assistance in sampling. Thanks are also extended to the anonymous reviewers for their advice on improving the article, in addition to the fishing authority of the Canton of Vaud (Switzerland) for their help in addressing potential issues in sampling.

Supplementary material

11356_2016_7715_MOESM1_ESM.tex (9 kb)
(TEX 9.07 KB)
11356_2016_7715_MOESM2_ESM.pdf (13 kb)
(PDF 12.7 KB)
11356_2016_7715_MOESM3_ESM.pdf (28 kb)
(PDF 28.2 KB)
11356_2016_7715_MOESM4_ESM.pdf (38 kb)
(PDF 37.7 KB)
11356_2016_7715_MOESM5_ESM.pdf (35 kb)
(PDF 35.4 KB)
11356_2016_7715_MOESM6_ESM.pdf (38 kb)
(PDF 38.3 KB)
11356_2016_7715_MOESM7_ESM.pdf (240 kb)
(PDF 239 KB)

References

  1. Blais JM, Kalff J (1995) The influence of lake morphometry on sediment focusing. Limnology and Oceanography 40(3):582–588CrossRefGoogle Scholar
  2. Bloesch J (1994) A review of methods used to measure sediment resuspension. Hydrobiologia 284(1):13–18CrossRefGoogle Scholar
  3. Bloesch J (1996) Towards a new generation of sediment traps and a better measurement/understanding of settling particle flux in lakes and oceans: a hydrodynamical protocol. Aquat Sci 58(4):283–296CrossRefGoogle Scholar
  4. Bloesch J, Uehlinger U (1986) Horizontal sedimentation differences in a eutrophic Swiss lake. Limnol Oceanogr 31(5):1094–1109CrossRefGoogle Scholar
  5. Bonvin F, Rutler R, Chèvre N, Halder J, Kohn T, Kohn T (2011) Spatial and temporal presence of a wastewater-d micropollutant plume in Lake Geneva. Environ Sci Technol 45(11):4702–4709. doi: 10.1021/es2003588 CrossRefGoogle Scholar
  6. Bouffard D, Boegman L (2012) Encyclopedia of lakes and reservoirs, Springer Netherlands, Dordrecht, chap Basin-Scale Internal Waves:102–107. doi: 10.1007/978-1-4020-4410-6_240
  7. Bouffard D, Lemmin U (2013) Kelvin waves in Lake Geneva. J Great Lakes Res 39(4):637–645. doi: 10.1016/j.jglr.2013.09.005 CrossRefGoogle Scholar
  8. Burton GA (1992) Assessing contaminated aquatic sediments. Environ Sci Technol 26(10):1862–1862. doi: 10.1021/es00034a613 CrossRefGoogle Scholar
  9. Caillet S (1999) Apports atmosphériques en 210Pb et 7Be dans la région de lac Léman. PhD thesis. University of Geneva, SwitzerlandGoogle Scholar
  10. Cleveland RB, Clevland WS, McRae JE, Terpenning I (1990) STL: A seasonal-trend decomposition procedure based on loess. J Off Stat 6(1):3–73Google Scholar
  11. Cornett RJ, Chant L, Risto BA, Bonvin E (1994) Identifying resuspended particles using isotope ratios. Hydrobiologia 284(1):69–77CrossRefGoogle Scholar
  12. Czekalski N, Berthold T, Caucci S, Egli A, Buergmann H (2012) Increased levels of multiresistant bacteria and resistance genes after wastewater treatment and their dissemination into Lake Geneva, Switzerland. Front Microbiol 3(106):1–18. doi: 10.3389/fmicb.2012.00106 Google Scholar
  13. Dean WE (1974) Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition comparison with other methods. J Sediment Res 44(1):242– 248Google Scholar
  14. Direction Générale de l’Environnement du Canton de Vaud (2011). Bilans 2010 de l’épuration Vaudoise. Tech.rep.., http://www.vd.ch, [French]
  15. Dominik J, Burrus D, Vernet JP (1987) Transport of the environmental radionuclides in an alpine watershed. Earth Planet. Sci. Lett. 84(2–3):165–180. doi: 10.1016/0012-821X(87)90083-5 CrossRefGoogle Scholar
  16. Dominik J, Dulinski M, Span D, Hofmann A, Favarger PY, Vernet JP (1993) Transfert de matiere et de radio-isotopes entre l’eau et les sediments dans le Léman. Tech. rep., Commission Internationale Pour la Protection des Eaux de Léman (CIPEL), [French]Google Scholar
  17. Drexler TM, Nittrouer CA (2008) Stratigraphic signatures due to flood deposition near the Rhone River: Gulf of Lions, northwest Mediterranean Sea. Continental Shelf Research 28 (15):1877–1894. doi: 10.1016/j.csr.2007.11.012 CrossRefGoogle Scholar
  18. Dulinski M, Dominik J (1992) Density corrections in gamma spectrometry of lake sediments. Nucl Geophys: International Journal of Radiation Applications & Instrumentation Part E 6(2):237– 242Google Scholar
  19. Fer I, Lemmin U (2002) Winter cascading of cold water in Lake Geneva. J Geophys Res 47(2):13–1–13–16. doi: 10.1029/2001JC000828 Google Scholar
  20. Fer I, Lemmin U, Thorpe SA (2002) Observations of mixing near the sides of a deep lake in winter. Limnol Oceanogr 47(2):535–544. doi: 10.4319/lo.2002.47.2.0535 CrossRefGoogle Scholar
  21. Gandais V, Vernet JP (1987) Détermination des Flux de Nutriments Sous Forme Particulaire dans le Léman à l’aide de Trappes à Sédiments, Tech. rep., Commission pour la Protection des Eaux de Léman (CIPEL), [French]Google Scholar
  22. Gascon Diez E, Garcia Bravo A, Porta N, Masson M, Graham ND, Stoll S, Akhtman Y, Amouroux D, Loizeau J L (2013) Influence of a wastewater treatment plant on mercury contamination and sediment characteristics in Vidy Bay (Lake Geneva, Switzerland). Aquat Sci 76(S1):21–32. doi: 10.1007/s00027-013-0325-4 Google Scholar
  23. Goldscheider N, Haller L, Poté J, Wildi W, Zopfi J (2007) Characterizing water circulation and contaminant transport in Lake Geneva using bacteriophage tracer experiments and limnological methods. Environ Sci Technol 41(15):5252–5258. doi: 10.1021/es070369p CrossRefGoogle Scholar
  24. Graham ND, Stoll S, Loizeau JL (2014) Colloid characterization at the sediment-water interface of Vidy Bay, Lake Geneva. Fundam Appl Limnol 184(2):87–100. doi: 10.1127/1863-9135/2014/0591 CrossRefGoogle Scholar
  25. Haller L, Amedegnato E, Poté J, Wildi W (2009a) Influence of freshwater sediment characteristics on persistence of fecal indicator bacteria. Water Air Soil Pollut 203(1):217–227. doi: 10.1007/s11270-009-0005-0 CrossRefGoogle Scholar
  26. Haller L, Poté J, Loizeau JL, Wildi W (2009b) Distribution and survival of faecal indicator bacteria in the sediments of the Bay of Vidy, Lake Geneva, Switzerland. Ecol Indic 9(3):540–547. doi: 10.1016/j.ecolind.2008.08.001 CrossRefGoogle Scholar
  27. He Q, Walling DE (1996) Use of fallout Pb-210 measurements to investigate longer-term rates and patterns of overbank sediment deposition on the floodplains of lowland rivers. Earth Surf Process Landf 21(2):141–154CrossRefGoogle Scholar
  28. International Atomic Energy Agency (2009). A procedure for the determination of Po-210 in water samples by alpha spectrometry, Tech. rep., International Atomic Energy Agency (IAEA)Google Scholar
  29. Klump JV, Edgington DN, Waples JT, Szmania DC, Brown BE, Orlandini KA (2004) Sampling methods and approaches using radionuclide tracers in the study of sediment resuspension and cross margin transport in nearshore of the Laurentian Great Lakes. Int J Sediment Res 18(2):266–277Google Scholar
  30. Kremer K, Hilbe M, Simpson G, Decrouy L, Wildi W, Girardclos S (2015) Reconstructing 4000 years of mass movement and tsunami history in a deep peri-Alpine lake (Lake Geneva, France-Switzerland). Sedimentology 62(5):1305–1327. doi: 10.1111/sed.12190 CrossRefGoogle Scholar
  31. Lazzarotto J, Nirel P, Rapin F (2006). Evolution Physico-Chimique des Eaux du Léman (Éléments Majeurs) - Physical-Chemical Changes in the Waters of Lake Geneva (major-elements). Tech. Rep. Campagne 2005, Commission Internationale Pour la Protection des Eaux de Léman (CIPEL), [French]Google Scholar
  32. Lazzarotto J, Quetin P, Klein A (2013). Évolution Physico-Chimique des Eaux du Léman (Éléments Majeurs) - Physical-Chemical Changes in the Waters of Lake Geneva (major-elements). Tech. Rep., Campagne 2012, Commission Internationale Pour la Protection des Eaux de Léman (CIPEL), [French]Google Scholar
  33. Le Cloarec MF, Bonté P, Lefévre I, Mouchel JM, Colbert S (2007). Distribution of 7Be, 210Pb and 137Cs in watersheds of different scales in the Seine River basin: inventories and residence times. Sci Tot Environ 375(1–3):125–139. doi: 10.1016/j.scitotenv.2006.12.020 Google Scholar
  34. Le Thi AD, De Pascalis F, Umgiesser G, Wildi W (2012) Structure thermique et courantologie du Léman Thermal structure and circulation patterns of Lake Geneva. Arch Sci 65:65–80Google Scholar
  35. Lemmin U, D’Adamo N (1996) Summertime winds and direct cyclonic circulation: observations from Lake Geneva. Ann Geophys 14(1):1207–1220. doi: 10.1007/s00585-996-1207-z CrossRefGoogle Scholar
  36. Lemmin U, Mortimer CH (2005) Internal seiche dynamics in Lake Geneva. Limnol Oceanogr 50(1):207–216CrossRefGoogle Scholar
  37. Loizeau JL, Dominik J (2000) Evolution of the Upper Rhone River discharge and suspended sediment load during the last 80 years and some implications for Lake Geneva. Aquat Sci 62(1):54–67CrossRefGoogle Scholar
  38. Loizeau JL, Arbouille D, Santiago S, Vernet JP (1994) Evaluation of a wide range laser diffraction grain size analyser for use with sediments. Sedimentology 41(2):353–361. doi: 10.1111/j.1365-3091.1994.tb01410.x CrossRefGoogle Scholar
  39. Loizeau JL, Pardos M, Monna F, Peytremann C, Haller L, Dominik J (2004) The impact of a sewage treatment plant’s effluent on sediment quality in a small bay in Lake Geneva (Switzerland-France). Part 2: temporal evolution of heavy metals. Lakes Reserv Res Manag 9(1):53–63. doi: 10.1111/j.1440-1770.2004.00234.x CrossRefGoogle Scholar
  40. Mabit L, Benmansour M, Walling DE (2008) Comparative advantages and limitations of the fallout radionuclides 137Cs, 210Pb ex and 7Be for assessing soil erosion and sedimentation. J Environ Radioact 99(12):1799–1807. doi: 10.1016/j.jenvrad.2008.08.009 CrossRefGoogle Scholar
  41. Martin JM, Wollast R, Loijens M, Thomas AJ, Mouchel JM, Nieuwenhuize J (1994) Origin and fate of artificial radionuclides in the Scheldt estuary. Mar Chem 46(1):189–202. doi: 10.1016/0304-4203(94)90055-8 CrossRefGoogle Scholar
  42. Olley JM, Murray A, Roberts RG (1996) The effects of disequilibria in the uranium and thorium decay chains on burial dose rates in fluvial sediments. Quat Sci Rev 15(7):751–760. doi: 10.1016/0277-3791(96)00026-1 CrossRefGoogle Scholar
  43. Ozen B, Thorpe SA, Lemmin U, Osborn TR (2006) Cold-water events and dissipation in the mixed layer of a lake. J Phys Oceanogr 36(10):1928–1939CrossRefGoogle Scholar
  44. Pardos M, Benninghoff C, De Alencastro LF, Wildi W (2004) The impact of a sewage treatment plant’s effluent on sediment quality in a small bay in Lake Geneva (Switzerland-France). Part 1: spatial distribution of contaminants and the potential for biological impacts. Lakes Reserv Res Manag 9(1):41–52. doi: 10.1111/j.1440-1770.2004.00233.x CrossRefGoogle Scholar
  45. Pewsey A, Neuhäuser M, Ruxton GD (2013) Circular statistics in R. Oxford University PressGoogle Scholar
  46. Poté J, Goldscheider N, Haller L, Zopfi J, Khajehnouri F, Wildi W (2008a) Origin and spatial-temporal distribution of faecal bacteria in a bay of Lake Geneva, Switzerland. Environ Monit Assess 154 (1-4):337–348. doi: 10.1007/s10661-008-0401-8 CrossRefGoogle Scholar
  47. Poté J, Haller L, Loizeau JL, Garcia Bravo A, Sastre V, Wildi W (2008b) Effects of a sewage treatment plant outlet pipe extension on the distribution of contaminants in the sediments of the Bay of Vidy, Lake Geneva, Switzerland. Bioprocess Technol 99(15):7122–7131. doi: 10.1016/j.biortech.2007.12.075 Google Scholar
  48. Quaresma LS, Vitorino J, Oliveira A, da Silva J (2007) Evidence of sediment resuspension by nonlinear internal waves on the western Portuguese mid-shelf. Mar Geol 246(2-4):123–143. doi: 10.1016/j.margeo.2007.04.019 CrossRefGoogle Scholar
  49. R Development Team (2013). R: a language and environment for statistical computing. URL http://www.R-project.org/
  50. Razmi AM, Barry DA, Bakhtyar R, Le Dantec N, Dastgheib A, Lemmin U, Wüst A (2013) Current variability in a wide and open lacustrine embayment in Lake Geneva (Switzerland). J Great Lakes Res 39 (3):455–465. doi: 10.1016/j.jglr.2013.06.011 CrossRefGoogle Scholar
  51. Razmi AM, Barry DA, Lemmin U, Bonvin F, Kohn T, Bakhtyar R (2014) Direct effects of dominant winds on residence and travel times in the wide and open lacustrine embayment: Vidy Bay (Lake Geneva, Switzerland). Aquat Sci 76(1):59–71. doi: 10.1007/s00027-013-0321-8 CrossRefGoogle Scholar
  52. Rizopoulos D (2006) ltm: an R package for latent variable modeling and item response theory analyses. J Stat Softw 17(5):1–25CrossRefGoogle Scholar
  53. Signal Developers (2013). Signal: signal processing. URL http://r-forge.r-project.org/projects/signal
  54. Soulsby RL, Whitehouse RJS (1997) Threshold of sediment motion in coastal environments. In: Pacific Coasts and Ports Conference, Centre for Advanced Engineering. University of Canterbury, Christchurch, pp 145–150Google Scholar
  55. Thomas AJ (1988) Geochimie des radioelements naturels et artificiels : application a l’etude de l’interface continent-ocean. PhD thesis, Paris 6, Paris, France, [French]Google Scholar
  56. Thorpe SA, Keen JM, Jiang R, Lemmin U (1996) High-frequency internal waves in Lake Geneva. Philosophical Transactions of the Royal Society of London Series A - Mathematical. Phys Eng Sci 354(1705):237–257CrossRefGoogle Scholar
  57. Wan GJ, Chen JA, Wu FC, Xu SQ, Bai ZG, Wan EY, Wang CS, Huang RG, Yeager KM, Santschi PH (2005) Coupling between 210Pb ex and organic matter in sediments of a nutrient-enriched lake: An example from Lake Chenghai, China. Chem Geol 224(4):223–236. doi: 10.1016/j.chemgeo.2005.07.025 CrossRefGoogle Scholar
  58. Wüest A, Lorke A (2003) Small-scale hydrodynamics in lakes. Annu Rev Fluid Mech 35(1):373–412. doi: 10.1146/annurev.fluid.35.101101.161220 CrossRefGoogle Scholar
  59. Wieland E, Santschi PH, Beer J (1991) A multitracer study of radionuclides in Lake Zurich, Switzerland 2. Residence times, removal processes, and sediment focusing. Journal of Geophysical Research 96(C9):17,067–17,080CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department F.-A. Forel for Environmental and Aquatic Sciences and The Institute for Environmental SciencesUniversity of GenevaGenevaSwitzerland
  2. 2.Physics of Aquatic Systems Laboratory Margaretha Kamprad Chair ENACÉcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland

Personalised recommendations