Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

TiO2 structures doped with noble metals and/or graphene oxide to improve the photocatalytic degradation of dichloroacetic acid

  • 2294 Accesses

  • 27 Citations


Noble metals have been used to improve the photocatalytic activity of TiO2. Noble metal nanoparticles prevent charge recombination, facilitating electron transport due to the equilibration of the Fermi levels. Furthermore, noble metal nanoparticles show an absorption band in the visible region due to a high localized surface plasmon resonance (LSPR) effect, which contributes to additional electron movements. Moreover, systems based on graphene, titanium dioxide, and noble metals have been used, considering that graphene sheets can carry charges, thereby reducing electron-hole recombination, and can be used as substrates of atomic thickness. In this work, TiO2-based nanocomposites were prepared by blending TiO2 with noble metals (Pt and Ag) and/or graphene oxide (GO). The nanocomposites were mainly characterized via transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transformed infrared (FTIR), Raman spectroscopy, and photocurrent analysis. Here, the photocatalytic performance of the composites was analyzed via oxidizing dichloroacetic acid (DCA) model solutions. The influence of the noble metal load on the composite and the ability of the graphene sheets to improve the photocatalytic activity were studied, and the composites doped with different noble metals were compared. The results indicated that the platinum structures show the best photocatalytic degradation, and, although the presence of graphene oxide in the composites is supposed to enhance their photocatalytic performance, graphene oxide does not always improve the photocatalytic process.

It is a schematic diagram. Where NM is Noble Metal and LSPR means Localized Surface Plasmon Resonance

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. Adán C, Marugán J, Obregón S, Colón G (2015) Photocatalytic activity of bismuth vanadates under UV-A and visible light irradiation: inactivation of Escherichia coli vs oxidation of methanol. Catal Today 240:93–99. doi:10.1016/j.cattod.2014.03.059

  2. Ao Y, Wang P, Wang C, Hou J, Qian J (2013) Preparation of graphene oxide-Ag3PO4 composite photocatalyst with high visible light photocatalytic activity. Appl Surf Sci 271:265–270. doi:10.1016/j.cattod.2014.03.059

  3. Cavalcante RP, Dantas RF, Bayarri B, González O, Giménez J, Esplugas S, Junior AM (2016) Photocatalytic mechanism of metoprolol oxidation by photocatalysts TiO2 and TiO2 doped with 5 % B: primary active species and intermediates. Appl Catal B-Environ 194:111–122. doi:10.1016/j.apcatb.2016.04.054

  4. Comninellis C, Kapalka A, Malato S, Parsons SA, Poulios I, Mantzavinos D (2008) Advanced oxidation processes for water treatment: advances and trends for R&D. J Chem Technol Biotechnol 83:769–776. doi:10.1002/jctb.1873

  5. Daghrir R, Drogui P, Robert D (2013) Modified TiO2 for environmental photocatalytic applications: a review. Ind Eng Chem Res 52:3581–3599. doi:10.1021/ie303468t

  6. Devi LG, Kavitha R (2016) A review on plasmonic metal-TiO2 composite for generation, trapping, storing and dynamic vectorial transfer of photogenerated electrons across the Schottky junction in a photocatalytic system. Appl Surf Sci 360:601–622. doi:10.1016/j.apsusc.2015.11.016

  7. Dominguez S, Ribao P, Rivero MJ, Ortiz I (2015) Influence of radiation and TiO2 concentration on the hydroxyl radicals generation in a photocatalytic LED reactor. Application to dodecylbenzenesulfonate degradation. Appl. Catal B-Environ 178:165–169. doi:10.1016/j.apcatb.2014.09.072

  8. Escudero CJ, Iglesias O, Dominguez S, Rivero MJ, Ortiz I (2016) Performance of electrochemical oxidation and photocatalysis in terms of kinetics and energy consumption. New insights into the p-cresol degradation. J Environ Manag. doi:10.1016/j.jenvman.2016.04.049

  9. Fernandez-Castro P, Vallejo M, San Roman MF, Ortiz I (2015) Insight in the fundamentals of advanced oxidation processes. Role and review of the determination methods of reactive oxygen species. J Chem Technol Biot 90:796–820. doi:10.1002/jctb.4634

  10. Ferrari AC, Bonaccorso F, Falko V, Novoselov KS, Roche S, Boggild P et al (2015) Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7:4598–4810. doi:10.1039/c4nr01600a

  11. Gómez-Pastora J, Dominguez S, Bringas E, Rivero MJ, Ortiz I, Dionysiou DD (2016) Review and perspectives on the use of magnetic nanophotocatalysts (MNPCs) in water treatment. J Chem Eng. doi:10.1016/j.cej.2016.04.140

  12. Gou X, Cheng Y, Liu B, Yang B, Yan X (2015) Fabrication and photocatalytic properties of TiO2/reduced graphene oxide/Ag nanocomposites with UV/Vis response. Eur J Inorg Chem 2015:2222–2228. doi:10.1002/ejic.201403238

  13. Hummers WS, Hoffeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 8:1339

  14. Ingram DB, Christopher P, Bauer JL, Linic S (2011) Predictive model for the design of plasmonic metal/semiconductor composite photocatalysts. ACS Catal 1:1441–1447. doi:10.1021/cs200320h

  15. Khan MR, Chuan TW, Yousuf A, Chowdhury MNK, Cheng CK (2015) Schottky barrier and surface plasmonic resonance phenomena towards the photocatalytic reaction: study of their mechanisms to enhance photocatalytic activity. Catal Sci Technol 5:2522–2531. doi:10.1039/c4cy01545b

  16. Khanna A, Shetty KV (2013) Solar photocatalysis for treatment of acid yellow-17 (AY-17) dye contaminated water using Ag@TiO2 core-shell structured nanoparticles. Environ Sci Pollut Res 20:5692–5707. doi:10.1007/s11356-013-1582-4

  17. Li J, Zhou SL, Hong GB, Chang CT (2013) Hydrothermal preparation of P25-graphene composite with enhanced adsorption and photocatalytic degradation of dyes. Chem Eng J 219:486–491. doi:10.1016/j.cej.2013.01.031

  18. Liang D, Cui C, Hu H, Wang Y, Xu S, Ying B, Li P, Lu B, Shen H (2014) One-step hydrothermal synthesis of anatase TiO2/reduced graphene oxide nanocomposites with enhanced photocatalytic activity. J Alloy Compd 582:236–240. doi:10.1016/j.jallcom.2013.08.062

  19. Liu L, Bai H, Liu J, Sun DD (2013) Multifunctional graphene oxide-TiO2-Ag nanocomposites for high performance water disinfection and decontamination under solar irradiation. J Hazard Mater 261:214–223. doi:10.1016/j.jhazmat.2013.07.034

  20. Marugán J, Aguado J, Gernjak W, Malato S (2007) Solar photocatalytic degradation of dichloroacetic acid with silica-supported titania at pilot-plant scale. Catal Today 129:56–68. doi:10.1016/j.cattod.2007.06.054

  21. Ortiz I, Mosquera A, Lema J, Esplugas S (2015) Advanced technologies for water treatment and reuse. AICHE J 61(10):3146–3158. doi:10.1002/aic.15013

  22. Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlope PSM, Hamilton JWJ, Byrne JA, O’Shea K, Entezari MH, Dionysiou DD (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B-Environ 125:331–349. doi:10.1016/j.apcatb.2012.05.036

  23. Rocha RP, Gonçalves AG, Pastrana-Martínez LM, Bordoni BC, Soares OSGP, Órfão JJM, Faria JL, Figueiredo JL, Silva AMT, Pereira MFR (2015) Nitrogen-doped graphene-based materials for advanced oxidation processes. Catal Today 249:192–198. doi:10.1016/j.cattod.2014.10.046

  24. Rodríguez-Chueca J, Ferreira LC, Fernandes JR, Tavares PB, Lucas MS, Peres JA (2015) Photocatalytic discolouration of reactive black 5 by UV-A LEDs and solar radiation. Journal of Environmental Chemical Engineering 3:2948–2956. doi:10.1016/j.jece.2015.10.019

  25. Shet A, Shetty KV (2015) Photocatalytic degradation of phenol using Ag core-TiO2 shell (Ag@TiO2) nanoparticles under UV light irradiation. Environ Sci Pollut Res. doi:10.1007/s11356-015-5579-z

  26. Tan LL, Ong WJ, Chai SP, Mohamed AR (2015) Noble metal modified reduced graphene oxide/TiO2 ternary nanostructures for efficient visible-light-driven photoreduction of carbon dioxide into methane. Appl Catal B-Environ 166-167:251–259. doi:10.1016/j.apcatb.2014.11.035

  27. Tisa F, Abdul Raman AA, Wan Daud WMA (2014) Applicability of fluidized bed reactor in recalcitrant compound degradation through advanced oxidation processes: a review. J Environ Manag 146:260–275. doi:10.1016/j.jenvman.2014.07.032

  28. Verbruggen SW, Keulemans M, Filippousi M, Flahaut D, Van Tendeloo D, Lacombe S, Martens JA, Lenaerts S (2014) Plasmonic gold-silver alloy on TiO2 photocatalysts with tunable visible light activity. Appl Catal B-Environ 156-157:116–121. doi:10.1016/j.apcatb.2014.03.027

  29. Wang P, Wang J, Wang X, Yu H, Yu J, Lei M, Wang Y (2013) One-step synthesis of easy-recycling TiO2-rGO nanocomposite photocatalysts with enhanced photocatalytic activity. Appl Catal B-Environ 132-133:452–459. doi:10.1016/j.apcatb.2012.12.009

  30. Younas H, Qazi IA, Hashmi J, Ali Awan M, Mahmood A, Qayyum HA (2014) Visible light photocatalytic water disinfection and its kinetics using Ag-doped titania nanoparticles. Environ Sci Pollut Res 21:740–752. doi:10.1007/s11356-013-1980-7

  31. Zalazar CS, Lovato ME, Labas MD, Brandi RJ, Cassano AE (2007) Intrinsic kinetics of the oxidative reaction of dichloroacetic acid employing hydrogen peroxide and ultraviolet radiation. Chem Eng Sci 62:5840–5853. doi:10.1016/j.ces.2007.06.023

  32. Zhang P, Wang T, Gong J (2015) Mechanistic understanding of the plasmonic enhancement for solar water splitting. Adv Mater 27:5328–5342. doi:10.1002/adma.201500888

  33. Ziylan-Yavas A, Mizukoshi Y, Maeda Y, Ince NH (2015) Supporting of pristine TiO2 with noble metals to enhance the oxidation and mineralization of paracetamol by sonolysis and sonophotolysis. Appl. Catal B-Environ 172-173:7–17. doi:10.1016/j.apcatb.2015.02.012

Download references


Financial support from projects CTM2015-69845-R and CTQ2015-66078-R (MINECO/FEDER, UE) are gratefully acknowledged. Paula Ribao also thanks the University of Cantabria for her research grant. The authors wish to thank Professor Jesús Antonio González and Fernando Rodriguez of the Department CITIMAC of the University of Cantabria for their assistance in the Raman spectra and photocurrent measurements, respectively.

Author information

Correspondence to Inmaculada Ortiz.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material


(DOCX 21.1 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ribao, P., Rivero, M.J. & Ortiz, I. TiO2 structures doped with noble metals and/or graphene oxide to improve the photocatalytic degradation of dichloroacetic acid. Environ Sci Pollut Res 24, 12628–12637 (2017). https://doi.org/10.1007/s11356-016-7714-x

Download citation


  • Photocatalysis
  • Noble metals
  • Graphene oxide
  • Titanium dioxide
  • Schottky barrier
  • LSPR