Environmental Science and Pollution Research

, Volume 23, Issue 24, pp 25299–25311 | Cite as

Impact of untreated urban waste on the prevalence and antibiotic resistance profiles of human opportunistic pathogens in agricultural soils from Burkina Faso

  • Benjamin Youenou
  • Edmond Hien
  • Amélie Deredjian
  • Elisabeth Brothier
  • Sabine Favre-Bonté
  • Sylvie Nazaret
Research Article


This study examined the long-term effects of the landfill disposal of untreated urban waste for soil fertilization on the prevalence and antibiotic resistance profiles of various human opportunistic pathogens in soils from Burkina Faso. Samples were collected at three sites in the periphery of Ouagadougou during two campaigns in 2008 and 2011. At each site, amendment led to changes in physico-chemical characteristics as shown by the increase in pH, CEC, total C, total N, and metal contents. Similarly, the numbers of total heterotrophic bacteria were higher in the amended fields than in the control ones. No sanitation indicators, i.e., coliforms, Staphylococci, and Enterococci, were detected. Pseudomonas aeruginosa and Burkholderia cepacia complex (Bcc) were detected at a low level in one amended field. Stenotrophomonas maltophilia was detected from both campaigns at the three sites in the amended fields and only once in an unamended field. Diversity analysis showed some opportunistic pathogen isolates to be closely related to reference clinical strains responsible for nosocomial- or community-acquired infections in Northern countries. Antibiotic resistance tests showed that P. aeruginosa and Bcc isolates had a wild-type phenotype and that most S. maltophilia isolates had a multi-drug resistance profile with resistance to 7 to 15 antibiotics. Then we were able to show that amendment led to an increase of some human opportunistic pathogens including multi-drug resistant isolates. Although the application of untreated urban waste increases both soil organic matter content and therefore soil fertility, the consequences of this practice on human health should be considered.


Human opportunistic pathogen Soil Antibiotic resistance Burkina Faso Urban waste 



This work was supported by a CORUS project of the French “Ministère des Affaires Etrangères”. B. Youenou was funded by a grant from the ADEME and the DGA. We thank the PARMIC technical platform and Rhône-Alpes Region Cluster “Environnement.”


  1. Adamek M, Overhage J, Bathe S, Winter J, Fischer R, Schwartz T (2011) Genotyping of environmental and clinical Stenotrophomonas maltophilia isolates and their pathogenic potential. PLoS One 6:e27615. doi: 10.1371/journal.pone.0027615 CrossRefGoogle Scholar
  2. Afon A (2007) An analysis of solid waste generation in a traditional African city: the example of Ogbomoso, Nigeria. Environ Urban 19:527–537CrossRefGoogle Scholar
  3. Albiach R, Canet R, Pomares F, Ingelmo F (2000) Microbial biomass content and enzymatic activities after the application of organic amendments to a horticultural soil. Bioresour Technol 75:43–48CrossRefGoogle Scholar
  4. Ali SW, Li R, Zhou WY, Sun JQ, Guo P, Ma JP, Li SP (2010) Isolation and characterization of an abamectin-degrading Burkholderia cepacia-like GB-01 strain. Biodegradation 21:441–452. doi: 10.1007/s10532-009-9314-7 CrossRefGoogle Scholar
  5. Alvarez-Ortega C, Wiegand I, Olivares J, Hancock RE, Martínez JL (2011) The intrinsic resistome of Pseudomonas aeruginosa to β-lactams. Virulence 2:144–146CrossRefGoogle Scholar
  6. Baker-Austin C, Wright MS, Stepanauskas R, McArthur JV (2006) Co-selection of antibiotic and metal resistance. Trends Microbiol 14:176–182CrossRefGoogle Scholar
  7. Balandreau J, Viallard V, Cournoyer B, Coenye T, Laevens S, Vandamme P (2001) Burkholderia cepacia genomovar III is a common plant-associated bacterium. Appl Environ Microbiol 67:982–985CrossRefGoogle Scholar
  8. Baquero F, Martinez JL, Canton R (2008) Antibiotics and antibiotic resistance in water environments. Curr Opin Microbiol 19:260–265. doi: 10.1016/j.copbio.2008.05.006 Google Scholar
  9. Bastida F, Kandeler E, Moreno JL, Ros M, García C, Hernández T (2008) Application of fresh and composted organic wastes modifies structure, size and activity of soil microbial community under semiarid climate. Appl Soil Ecol 40:318–329CrossRefGoogle Scholar
  10. Berg G, Roskot N, Smalla K (1999) Genotypic and phenotypic relationships between clinical and environmental isolates of Stenotrophomonas maltophilia. J Clin Microbiol 37:3594–3600Google Scholar
  11. Berg G, Eberl L, Hartmann A (2005) The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environ Microbiol 7:1673–1685CrossRefGoogle Scholar
  12. Canton R, Morosini MI (2011) Emergence and spread of antibiotic resistance following exposure to antibiotics. FEMS Microbiol Reviews 35:977–991. doi: 10.1111/j.1574-6976.2011.00295.x CrossRefGoogle Scholar
  13. Coenye T, Mahenthiralingam E, Henry D, LiPuma JJ, Laevens S, Gillis M, Speert DP, Vandamme P (2001) Burkholderia ambifaria sp. nov., anovel member of the Burkholderia cepacia complex including biocontrol and cystic fibrosis-related isolates. Int J Syst Evol Microbiol 51:1481–1490CrossRefGoogle Scholar
  14. Colinon C, Deredjian A, Hien E, Brothier E, Bouziri L, Cournoyer B, Hartman A, Henry S, Jolivet C, Ranjard L, Nazaret S (2013) Detection and enumeration of Pseudomonas aeruginosa in soil and manure assessed by an ecfX qPCR assay. J Appl Microbiol 114:1734–1749. doi: 10.1111/jam.12189 CrossRefGoogle Scholar
  15. Crecchio C, Curci M, Mininni R, Ricciuti P, Ruggiero P (2001) Short-term effects of municipal solid waste compost amendments on soil carbon and nitrogen content, some enzyme activities and genetic diversity. Biol Fertil Soils 34:311–318CrossRefGoogle Scholar
  16. Dalmastri C, Baldwin A, Tabacchioni S, Bevivino A, Mahenthiralingam E, Chiarini L, Dowson C (2007) Investigating Burkholderia cepacia complex populations recovered from Italian maize rhizosphere by multilocus sequence typing. Environ Microbiol 9:1632–1639CrossRefGoogle Scholar
  17. Debosz K, Petersen SO, Kure LK, Ambus P (2002) Evaluating effects of sewage sludge and household compost on soil physical, chemical and microbiological properties. Appl Soil Ecol 19:237–248CrossRefGoogle Scholar
  18. Deportes I, Benoit-Guyod JL, Zmirou D, Bouvier MC (1998) Microbial disinfection capacity of municipal solid waste (MSW) composting. J Appl Microbiol 85:238–246CrossRefGoogle Scholar
  19. Deredjian A, Colinon C, Hien E, Brothier E, Youenou B, Cournoyer B, Dequiedt S, Hartmann A, Jolivet C, Houot S, Ranjard L, Saby NPA, Nazaret S (2014) Low occurrence of Pseudomonas aeruginosa in agricultural soils with and without organic amendment. Front Cell Inf Microbiol 4:53. doi: 10.3389/fcimb.2014.00053 CrossRefGoogle Scholar
  20. Deredjian A, Alliot N, Blanchard L, Brothier E, Anane M, Cambier P, Jolivet C, Khelil MN, Nazaret S, Saby N, Thioulouse J, Favre-Bonté S (2016) Occurrence of Stenotrophomonas maltophilia in agricultural soils and antibiotic resistance properties. Res Microbiol 167:313–324. doi: 10.1016/j.resmic.2016.01.001 CrossRefGoogle Scholar
  21. Eaton D, Hilhorst T (2003) Opportunities for managing solid waste flows in the peri-urban interface of Bamako and Ouagadougou. Environ Urban 15:53–63Google Scholar
  22. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nuc Ac Res 32:1792–1797CrossRefGoogle Scholar
  23. Edrington TS, Fox WE, Callaway TR, Anderson RC, Hoffman DW, Nisbet DJ (2009) Pathogen prevalence and influence of composted dairy manure application on antimicrobial resistance profiles of commensal soil bacteria. Foodborne Pathog Dis 6:217–224. doi: 10.1089/fpd.2008.0184 CrossRefGoogle Scholar
  24. FAO-IUSS-ISRIC (2006) World reference base for soil resources. A framework for international classification, correlation and communication. World Soil Resources Reports 103, Rome, p. 128Google Scholar
  25. Farzan A, Friendship RM, Cook A, Pollari F (2010) Occurrence of Salmonella, Campylobacter, Yersinia enterocolitica, Escherichia coli O157 and Listeria monocytogenes in swine. Zoonoses Public Health 57:388–396. doi: 10.1111/j.18632378.2009.01248 CrossRefGoogle Scholar
  26. Garbeva P, van Overbeek LS, van Vuurde JWL, van Elsas JD (2001) Analysis of endophytic bacterial communities of potato by plating and denaturing gradient gel electrophoresis (DGGE) of 16S rDNA based PCR fragments. Microb Ecol 41:369–383CrossRefGoogle Scholar
  27. Garrec N, Picard-Bonnaud F, Pourcher AM (2003) Occurrence of Listeria sp and L. monocytogenes in sewage sludge used for land application: effect of dewatering, liming and storage in tank on survival of Listeria species. FEMS Immunol Med Microbiol 35:275–283CrossRefGoogle Scholar
  28. Gouy M, Guindon S, Gascuel O (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27:221–224. doi: 10.1093/molbev/msp259 CrossRefGoogle Scholar
  29. Green SK, Schroth MN, Cho JJ, Kominos SK, Vitanza-Jack VB (1974) Agricultural plants and soil as a reservoir for Pseudomonas aeruginosa. Appl Microbiol 28:987–991Google Scholar
  30. Hagedorn C, Gould WD, Bardinelli TR, Gustavson DR (1987) A selective medium for enumeration and recovery of Pseudomonas cepacia biotypes from soil. Appl Environ Microbiol 53:2265–2268Google Scholar
  31. Hardoim PR, Hardoim CC, van Overbeek LS, van Elsas JD (2012) Dynamics of seed-borne rice endophytes on early plant growth stages. PLoS One 7:e30438. doi: 10.1371/journal.pone.0030438 CrossRefGoogle Scholar
  32. Hassen A, Belguith K, Jedidi N, Cherif A, Cherif M, Boudabous A (2001) Microbial characterization during composting of municipal solid waste. Bioresour Technol 80:217–225CrossRefGoogle Scholar
  33. Henry DA, Campbell ME, Lipuma JJ, Speert DP (1997) Identification of Burkholderia cepacia isolates from patients with cystic fibrosis and use of a simple new selective medium. J Clin Microbiol 35:614–619Google Scholar
  34. Hickey WJ, Focht DD (1990) Degradation of mono-, di-, and trihalogenated benzoic acids by Pseudomonas aeruginosa JB2. Appl Environ Microbiol 56:3842–3850Google Scholar
  35. Holden MT, Seth-Smith HM, Crossman LC, Sebaihia M, Bentley SD, Cerdeño-Tárraga AM, Thomson NR, Bason N, Quail MA, Sharp S, Cherevach I, Churcher C, Goodhead I, Hauser H, Holroyd N, Mungall K, Scott P, Walker D, White B, Rose H, Iversen P, Mil-Homens D, Rocha EP, Fialho AM, Baldwin A, Dowson C, Barrell BG, Govan JR, Vandamme P, Hart CA, Mahenthiralingam E, Parkhill J (2009) The genome of Burkholderia cenocepacia J2315, an epidemic pathogen of cystic fibrosis patients. J Bacteriol 191:261–277. doi: 10.1128/JB.01230-08 CrossRefGoogle Scholar
  36. Hu LF, Chang X, Ye Y, Wang ZX, Shao YB, Shi W, Li X, Li JB (2011) Stenotrophomonas maltophilia resistance to thrimethroprim/sulfamethoxazole mediated by acquisition of sul and dfrA genes in a plasmid-mediated class 1 integron. Int J Antimicrob Agents 37:230–234. doi: 10.1016/j.ijantimicag.2010.10.025 CrossRefGoogle Scholar
  37. Jechalke S, Heuer H, Siemens J, Amelung W, Smalla K (2014) Fate and effects of veterinary antibiotics in soil. Trends Microbiol 22:536–545. doi: 10.1016/j.tim.2014.05.005 CrossRefGoogle Scholar
  38. Kaboré TWT, Houot S, Hien E, Zombre P, Hien V, Masse D (2010) Effect of the raw materials and mixing ratio of composted wastes on the dynamic of organic matter stabilization and nitrogen availability in composts of sub-Saharan Africa. Bioresour Technol 101:1002–1013CrossRefGoogle Scholar
  39. Kaszab E, Szoboszlay S, Dobolyi C, Háhn J, Pék N, Kriszt B (2011) Antibiotic resistance profiles and virulence markers of Pseudomonas aeruginosa strains isolated from composts. Bioresour Technol 102:1543–1548. doi: 10.1016/j.biortech.2010.08.027 CrossRefGoogle Scholar
  40. Kuske CR, Barns SM, Grow CC, Merrill L, Dunbar J (2006) Environmental survey for four pathogenic bacteria and closely related species using phylogenetic and functional genes. J Forensic Sci 51:548–558CrossRefGoogle Scholar
  41. Lavenir R, Jocktane D, Laurent F, Nazaret S, Cournoyer B (2007) Improved reliability of Pseudomonas aeruginosa PCR detection by the use of the species-specific ecfX gene target. J Microbiol Methods 70:20–29CrossRefGoogle Scholar
  42. Lee DY, Lauder H, Cruwys H, Falletta P, Beaudette LA (2008) Development and application of an oligonucleotide microarray and real-time quantitative PCR for detection of wastewater bacterial pathogens. Sci Total Environ 398:203–211. doi: 10.1016/j.scitotenv.2008.03.004 CrossRefGoogle Scholar
  43. Livermore DM (2012) Fourteen years in resistance. Intern J Antimicrob Agents 39:283–294. doi: 10.1016/j.ijantimicag.2011.12.012 CrossRefGoogle Scholar
  44. Mahenthiralingam E, Bischof J, Byrne SK, Radomski C, Davies JE, Av-Gay VP (2000) DNA-based diagnostic approaches for identification of Burkholderia cepacia complex, Burkholderia vietnamiensis, Burkholderia multivorans, Burkholderia stabilis, and Burkholderia cepacia genomovars I and III. J Clin Microbiol 38:3165–3173Google Scholar
  45. Marecik R, Króliczak P, Czaczyk K, Białas W, Olejnik A, Cyplik P (2008) Atrazine degradation by aerobic microorganisms isolated from the rhizosphere of sweet flag (Acorus calamus L.). Biodegradation 19:293–301CrossRefGoogle Scholar
  46. Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663. doi: 10.1111/1574-6976.12028 CrossRefGoogle Scholar
  47. Meng J, Doyle MP (1997) Emerging issues in microbiological food safety. Annu Rev Nutr 17:255–275CrossRefGoogle Scholar
  48. Pinot C, Deredjian A, Nazaret S, Brothier E, Cournoyer B, Segonds C, Favre-Bonté S (2011) Identification of Stenotrophomonas maltophilia strains isolated from environmental and clinical samples: a rapid and efficient procedure. J Appl Microbiol 111:1185–1193. doi: 10.1111/j.1365-2672.2011.05120 CrossRefGoogle Scholar
  49. Pitcher DG, Saunders NA, Owen RJ (1989) Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 8:151–156CrossRefGoogle Scholar
  50. Ramette A, LiPuma JJ, Tiedje JM (2005) Species abundance and diversity of Burkholderia cepacia complex in the environment. Appl Environ Microbiol 71:1193–1201CrossRefGoogle Scholar
  51. Sanchez MB, Hernandez A, Martinez JL (2009) Stenotrophomonas maltophilia drug resistance. Future Microbiol 4:655–660. doi: 10.2217/fmb.09.45 CrossRefGoogle Scholar
  52. Selezska K, Kazmierczak M, Müsken M, Garbe J, Schobert M, Häussler S, Wiehlmann L, Rohde C, Sikorski J (2012) Pseudomonas aeruginosa population structure revisited under environmental focus: impact of water quality and phage pressure. Environ Microbiol 14:1952–1967. doi: 10.1111/j.1462-2920.2012.02719 CrossRefGoogle Scholar
  53. Semenov AV, van Overbeek L, van Bruggen AH (2009) Percolation and survival of Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium in soil amended with contaminated dairy manure or slurry. Appl Environ Microbiol 75:3206–3215. doi: 10.1128/AEM.01791-08 CrossRefGoogle Scholar
  54. Singh RP, Singh P, Ibrahim MH, Hashim R (2011) Land application of sewage sludge: physicochemical and microbial response. Rev Environ Contam Toxicol 214:41–61. doi: 10.1007/978-1-4614-0668-6 Google Scholar
  55. Smith SR (2009) A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge. Environ Int 35:142–156. doi: 10.1016/j.envint.2008.06.009 CrossRefGoogle Scholar
  56. Su JQ, Wei B, Ou-Yang WY, Huang FY, Zhao Y, HJ X, Zhu YG (2015) Antibiotic resistome and its association with bacterial communities during sewage sludge composting. Environ Sci Technol 49:7356–7363. doi: 10.1021/acs.est.5b01012 CrossRefGoogle Scholar
  57. Talavera G, Castresana J (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 56:564–577CrossRefGoogle Scholar
  58. Trung TT, Hetzer A, Göhler A, Topfstedt E, Wuthiekanun V, Limmathurotsakul D, Peacock SJ, Steinmetz I (2011) Highly sensitive direct detection and quantification of Burkholderia pseudomallei bacteria in environmental soil samples by using real-time PCR. Appl Environ Microbiol 77:6486–6494. doi: 10.1128/AEM.00735-11 CrossRefGoogle Scholar
  59. Vedler E, Vahter M, Heinaru A (2004) The completely sequenced plasmid pEST4011 contains a novel IncP1 backbone and a catabolic transposon harboring tfd genes for 2,4-dichlorophenoxyacetic acid degradation. J Bacteriol 186:7161–7174CrossRefGoogle Scholar
  60. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703CrossRefGoogle Scholar
  61. Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A 95:6578–6583CrossRefGoogle Scholar
  62. Yamamoto S, Harayama S (1998) Phylogenetic relationships of Pseudomonas putida strains deduced from the nucleotide sequences of gyrB, rpoD and 16S rRNA genes. Int J Syst Bacteriol 48:813–819CrossRefGoogle Scholar
  63. Youenou B, Brothier E, Nazaret S (2014) Diversity among strains of Pseudomonas aeruginosa from manure and soil, evaluated by multiple locus variable number tandem repeat analysis and antibiotic resistance profiles. Res Microbiol 165:2–13. doi: 10.1016/j.resmic.2013.10.004 CrossRefGoogle Scholar
  64. Youenou B, Favre-Bonté S, Bodilis J, Brothier E, Dubost A, Muller D, Nazaret S (2015) Comparative genomics of environmental and clinical Stenotrophomonas maltophilia strains with different antibiotic resistance profiles. Genome Biol Evol 7:2484–2505. doi: 10.1093/gbe/evv161 CrossRefGoogle Scholar
  65. Young JS, Gormley E, Wellington EM (2005) Molecular detection of Mycobacterium bovis and Mycobacterium bovis BCG (Pasteur) in soil. Appl Environ Microbiol 71:1946–1952CrossRefGoogle Scholar
  66. Zhu YG, Johnson TA, Su JQ, Qiao M, Guo GX, Stedtfeld RD, Hashsham SA, Tiedje JM (2013) Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proc Natl Acad Sci U S A 110:3435–3440. doi: 10.1073/pnas.1222743110 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Research Group on « Multi-résistance environnementale et efflux bactérien», UMR 5557 Ecologie Microbienne, CNRSVetAgro Sup and Université Lyon 1VilleurbanneFrance
  2. 2.LMI IESOL, UMR Eco&SolsIRD-Université de OuagadougouOuagadougouBurkina Faso

Personalised recommendations