Environmental Science and Pollution Research

, Volume 23, Issue 23, pp 24256–24264 | Cite as

A modified biotrickling filter for nitrification-denitrification in the treatment of an ammonia-contaminated air stream

Research Article

Abstract

A conventional biotrickling filter for airborne ammonia nitrification has been modified, by converting the liquid sump into a biological denitrifying reactor. The biotrickling filter achieves an average ammonia removal efficiency of 92.4 %, with an empty bed retention time (EBRT) equal to 36 s and an average ammonia concentration of 54.7 mg Nm−3 in the raw air stream. The denitrification reactor converts ammonia into inert gas N2, in addition to other important advantages connected to the alkaline character of the biochemical pathway of the denitrifying bacteria. Firstly, the trickling water crossing the denitrification reactor underwent a notable pH increase from 7.3 to 8.0 which prevented the acidic inhibition of the nitrifying bacteria due to the buildup of nitric and nitrous acids. Secondly, the pH increase created the ideal conditions for the autotrophic nitrifying bacteria. The tests proved that an ammonia removal efficiency of above 90 % can be achieved with an EBRT greater than 30 s and a volumetric load lower than 200 g NH3 m−3 day−1. The results of the biofilm observation by using a scanning confocal laser microscope are reported together with the identification of degrading bacteria genera in the biotrickling filter. The efficiency of the plant and its excellent operational stability highlight the effectiveness of the synergistic action between the denitrification reactor and the biotrickling filter in removing airborne ammonia.

Keywords

Air treatment Ammonia Biotrickling Denitrification Nitrification 

References

  1. Baquerizo G, Maestre JP, Sakuma T, Deshusses MA, Gamisans X, Gabriel D, Lafuente J (2005) A detailed model of a biofilter for ammonia removal: model parameters analysis and model validation. Chem Eng J 113:205–214. doi:10.1016/j.cej.2005.03.003 CrossRefGoogle Scholar
  2. Basu S, Yadav BK, Mathur S (2015) Enhanced bioremediation of BTEX contaminated groundwater in pilot-scale wetlands. Environ Sci Pollut R 22:20041–20049. doi:10.1007/s11356/015-5240-x CrossRefGoogle Scholar
  3. Behera SN, Sharma M, Aneja VP, Balasubramanian R (2013) Ammonia in the atmosphere: a review on emission sources, atmospheric chemistry and deposition on terrestrial bodies. Environ Sci Pollut R 22:2328–2334Google Scholar
  4. Boehler AM, Heisele A, Seyfried A, Grömping M, Siegrist H (2015) (NH4)2SO4 recovery from liquid side streams. Environ Sci Pollut R 22:7295–7305. doi:10.1007/s11356-014-3392-8 CrossRefGoogle Scholar
  5. Capodaglio AG, Hlavínek P, Raboni M (2015) Physico-chemical technologies for nitrogen removal from wastewaters: a review. Rev Ambient Agua 10:481–498. doi:10.4136/ambi-agua.1618 Google Scholar
  6. CEPA-California Environmental Protection Agency (2007) Review of the California Ambient Air Quality Standard For Nitrogen Dioxide, Technical Support Document. Office of Environmental Health Hazard Assessment, OaklandGoogle Scholar
  7. Chiavola A, D’Amato E, Gori R, Lubello C, Sirini P (2013) Techno-economic evaluation of the application of ozone-oxidation in a full-scale aerobic digestion plant. Chemosphere 91:656–662. doi:10.1016/j.chemosphere.2013.01.015 CrossRefGoogle Scholar
  8. Copelli S, Raboni M, Urbini G (2015) Water Pollution: Biological Oxidation and Natural Control Techniques. In: Reedijk J (ed) Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Elsevier, 1–28. doi: 10.1016/B978–0–12-409547-2.11419-2Google Scholar
  9. Copelli S, Torretta V, Raboni M, Viotti P, Luciano A, Mancini G, Nano G (2012) Improving biotreatment efficiency of hot waste air streams: experimental upgrade of a full plant. Chem Eng Trans 30:49–54. doi:10.3303/CET1230009 Google Scholar
  10. Demeestere K, Van Langenhove H, Smet E (2002) Regeneration of a compost biofilter degrading high loads of ammonia by addition of gaseous methanol. J Air Waste Manage Assoc 52:796–804. doi:10.1080/10473289.2002.10470824 CrossRefGoogle Scholar
  11. Estrada JM, Kraakman NJR, Lebrero R, Muñoz R (2012) A sensitivity analysis of process design parameters, commodity prices and robustness on the economics of odour abatement technologies. Biotechnol Adv 30:1354–1363. doi:10.1016/j.biotechadv.2012.02.010 CrossRefGoogle Scholar
  12. Eyice Ö, Ince O, Ince BK (2015) Monitoring the abundance and the activity of ammonia-oxidizing bacteria in a full-scale nitrifying activated sludge reactor. Environ Sci Pollut R 20:2328–2334. doi:10.1007/s11356-014-3519-y CrossRefGoogle Scholar
  13. Gopinath M, Mohanapriya C, Sivakumar K, Baskar G, Muthukumaran C, Dhanasekar R (2015) Biodegradation of toluene vapor in coir based upflow packed bed reactor by Trichoderma Asperellum isolate. Environ Sci Pollut R 4:1–9. doi:10.1007/s11356-015-4550-3 Google Scholar
  14. Guillerm M, Assadi AA, Bouzaza A, Wolbert D (2014) Removal of gas-phase ammonia and hydrogen sulfide using photocatalysis, nonthermal plasma, and combined plasma and photocatalysis at pilot scale. Environ Sci Pollut R 21:13127–13137. doi:10.1007/s11356-014-3244-6 CrossRefGoogle Scholar
  15. Hernández J, Lafuente J, Prado ÓJ, Gabriel D (2013) Startup and longterm performance of biotrickling filters packed with polyurethane foam and poplar wood chips treating a mixture of ethylmercaptan, H2S, and NH3. J Air Waste Manage Assoc 63:462–471. doi:10.1080/10962247.2013.763305 CrossRefGoogle Scholar
  16. IRSA-Institute for Water Research of the National Research Council, APAT-Agency for the protection of the Environment and Technical Services (2003) Analytical methods for water-Report 29/2003, RomeGoogle Scholar
  17. Jabłońska M, Chmielarz L, Węgrzyn A (2013) Selective catalytic oxidation (SCO) of ammonia into nitrogen and water vapour over hydrotalcite originated mixed metal oxides: a short review. Chemik 67:701–710Google Scholar
  18. Kennes C, Veiga MC (2010) Technologies for the abatement of odours and volatile organic and inorganic. Chem Eng Trans 23:1–10. doi:10.3303/CET1023001 Google Scholar
  19. Liu Y, Li XS, Liu JL, Shi C, Zhu X, Zhu AM, Jang BW (2015) Ozone catalytic oxidation for ammonia removal from simulated air at room temperature. Catal Sci Technol 4:2227–2237. doi:10.1039/C4CY01269K CrossRefGoogle Scholar
  20. Moussavi G, Khavanin A, Sharifi A (2011) Ammonia removal from a waste air stream using a biotrickling filter packed with polyurethane foam through the SND process. Bioresource Technol 102:2517–2522. doi:10.1016/j.biortech.2010.11.047 CrossRefGoogle Scholar
  21. NCBI-National Center for Biotechnology Information (2015). GenBank database. http://www.ncbi.nlm.nih.gov/genbank/. Accessed 7 september 2015
  22. Paoli L, Benesperi R, Proietti Pannunzi D, Corsini A, Loppi S (2014) Biological effects of ammonia released from a composting plant assessed with lichens. Environ Sci Pollut R 21:5861–5872. doi:10.1007/s11356-014-2526-3 CrossRefGoogle Scholar
  23. Raboni M, Gavasci R, Viotti P (2015) Influence of denitrification reactor retention time distribution (RTD) on dissolved oxygen control and nitrogen removal efficiency. Water Sci Technol 72:45–51. doi:10.2166/wst.2015.188 CrossRefGoogle Scholar
  24. Raboni M, Torretta V, Viotti P, Urbini G (2013) Experimental plant for the physical-chemical treatment of groundwater polluted by municipal solid waste (MSW) leachate, with ammonia recovery. Rev Ambient Agua 8:22–32. doi:10.4136/ambi-agua.1250 Google Scholar
  25. Raboni M, Torretta V, Viotti P, Urbini G (2014) Calculating specific denitrification rates in pre-denitrification by assessing the influence of dissolved oxygen, sludge loading and the mixed-liquor recycle. Environ Technol 35:2582–2588. doi:10.1080/09593330.2014.913690 CrossRefGoogle Scholar
  26. Raghunandan K, McHunu S, Kumar A, Kumar KS, Govender A, Permaul K, Singh S (2014) Biodegradation of glycerol using bacterial isolates from soil under aerobic conditions. J Environ Sci Heal A 49:85–92. doi:10.1080/10934529.2013.824733 CrossRefGoogle Scholar
  27. Rocher V, Laverman AM, Gasperi J, Azimi S, Guérin S, Mottelet S, Villières T, Pauss A (2015) Nitrite accumulation during denitrification depends on the carbon quality and quantity in wastewater treatment with biofilters. Environ Sci Pollut R 22:10179–10188. doi:10.1007/s11356-015-4196-1 CrossRefGoogle Scholar
  28. Sakuma T, Jinsiriwanit S, Hattori T, Deshusses MA (2008) Removal of ammonia from contaminated air in a biotrickling filter – denitrifying bioreactor combination system. Water Res 42:4507–4513. doi:10.1016/j.watres.2008.07.036 CrossRefGoogle Scholar
  29. Schneider Y, Beier M, Rosenwinkel KH (2014) Influence of operating conditions on nitrous oxide formation during nitritation and nitrification. Environ Sci Pollut R 21:12099–12108. doi:10.1007/s11356-014-3148-5 CrossRefGoogle Scholar
  30. Shareefdeen Z, Singh A (2004) Biotechnology for odor and air pollution control. Springer, Berlin-Heidelberg-New YorkGoogle Scholar
  31. Tchobanoglous G, Burton FL, Stensel HD (2003) Wastewater engineering—treatment and reuse, 4th edn. Mc Graw Hill, New YorkGoogle Scholar
  32. Torretta V, Collivignarelli MC, Raboni M, Viotti P (2015b) Experimental treatment of a refinery waste air stream, for BTEX removal, by water scrubbing and biotrickling on a bed of Mitilus edulis shells. Environ Technol 36:2300–2307. doi:10.1080/09593330.2015.1026289 CrossRefGoogle Scholar
  33. Torretta V, Raboni M, Copelli S, Caruson P (2013a) Application of multi-stage biofilter pilot plants to remove odor and VOCs from industrial activities air emissions. WIT Trans Ecol Envir 176:225–233. doi:10.2495/ESUS130191 Google Scholar
  34. Torretta V, Raboni M, Copelli S, Caruson P (2015a) Effectiveness of a multi-stage biofilter approach at pilot scale to remove odor and VOCs. Int J Sustain Dev Plan 10:373–384. doi:10.2495/SDP-V10-N3-373-384 CrossRefGoogle Scholar
  35. US-DHHS (Department of Health and Human Services) (2004) Toxicological profile for ammonia. Agency for Toxic Substances and Disease Registry, AtlantaGoogle Scholar
  36. US-EPA (2010) Nutrient Control Design Manual. Report EPA/600/R-10/100. Office of Research and Development / National Risk Management Research Laboratory, CincinnatiGoogle Scholar
  37. Viotti P, Collivignarelli MC, Martorelli E, Raboni M (2016) Oxygen control and improved denitrification efficiency by dosing ferrous ions in the anoxic reactor. Desalin Water Treat 57:18240–18247. doi:10.1080/19443994.2015.1089200 CrossRefGoogle Scholar
  38. Wang L, Li T (2015) Effects of seasonal temperature variation on nitrification, anammox process, and bacteria involved in a pilot-scale constructed wetland. Environ Sci Pollut R 22:3774–3783. doi:10.1007/s11356-014-3633-x CrossRefGoogle Scholar
  39. Wang W, Wang S, Hu J, Shi C, Zhou B (2016) Gas-phase ammonia and PM2.5 ammonium in a busy traffic area of Nanjing, China. Environ Sci Pollut R 23:1691–1702. doi:10.1007/s11356-015-5397-3 CrossRefGoogle Scholar
  40. Zhang J, Jia W, Wang R, Ngo HH, Guo W, Xie H, Liang S (2016) Microbial community characteristics during simultaneous nitrification-denitrification process: effect of COD/TP ratio. Environ Sci Pollut R 23:2557–2565. doi:10.1007/s11356-015-5496-1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.School of Industrial EngineeringUniversity LIUC-CattaneoCastellanzaItaly
  2. 2.Department of Biotechnologies and Life SciencesUniversity of InsubriaVareseItaly

Personalised recommendations