Advertisement

Environmental Science and Pollution Research

, Volume 24, Issue 14, pp 12571–12581 | Cite as

Cu and Zr surface sites in the photocatalytic activity of TiO2 nanoparticles

  • O. Pliekhova
  • I. Arčon
  • O. Pliekhov
  • N. Novak Tušar
  • U. Lavrenčič ŠtangarEmail author
Environmental Photocatalysis and Photochemistry for a Sustainable World: A Big Challenge

Abstract

The rate of methylene blue and terephthalic acid degradation assisted with double metal-modified catalyst (0.1 mol% Cu and 1.0 mol% Zr) was enhanced as compared with single metal-modified catalysts (0.1, 0.5 mol% Cu and 1.0 mol% Zr). The wet impregnation method was used for copper and zirconium modification of the surface of Aeroxide P25 TiO2 particles. Simultaneous loading of both metals on the surface of P25 leads to an increased specific surface area of the obtained material despite negative Cu influence. The tendency of stabilization and agglomerate size rising with the time for Cu and Zr-modified catalysts were traced by dynamic light scattering (DLS) measurements. The observed optical characteristics suggest that Cu compensated the broadening of band gap caused by Zr loading. Crystal structure of obtained photocatalysts was explored by XRD; morphological data and particle size were obtained by SEM. EDX was used for Zr and Cu content determination. Cu K-edge extended X-ray absorption fine structure (EXAFS) and X-ray absorption near edge structure (XANES) analytical techniques were used to investigate the local Cu neighbourhood in the samples and to identify copper coordination and valence state of copper species in the synthesized nanocomposites.

Keywords

Photocatalysis Titanium dioxide  Copper Zirconium Co-doping EXAFS XANES 

Notes

Acknowledgments

This work has been funded by INFINITY project in the framework of the EU Erasmus Mundus Action 2. Financial support from Belgian-Slovenian (FWO-ARRS) project “Development of advanced TiO2-based photocatalyst for the degradation of organic pollutants from wastewater” and from the Ministry of Education, Science and Sport of Slovenia, the Slovenian Research Agency is acknowledged (research programs P2-0377, P1-0112 and P1-0021). Access to synchrotron radiation facilities of ELETTRA, Trieste, Italy, beamline XAFS, in the frame of project 20140041, is also acknowledged. We thank Giuliana Aquilanti and Luca Olivi, from XAFS beamline at synchrotron ELETTRA, for the support and expert advice on beamline operation. We also thank Dr. Mattia Fanetti from Materials Research Laboratory, University of Nova Gorica, and Helena Spreizer from National Institute of Chemistry for performing SEM-EDX and UV–Vis DRS measurements, respectively.

Supplementary material

11356_2016_7685_MOESM1_ESM.docx (120 kb)
ESM 1 (DOCX 120 kb)

References

  1. Bubacz K, Kusiak-Nejman E, Tryba B, Morawski AW (2013) Investigation of OH radicals formation on the surface of TiO2/N photocatalyst at the presence of terephthalic acid solution. Estimation of optimal conditions. J Photochem Photobiol A Chem 261:7–11. doi: 10.1016/j.jphotochem.2013.04.003 CrossRefGoogle Scholar
  2. Carp O, Huisman CL, Reller A (2004) Photoinduced reactivity of titanium dioxide. Prog Solid State Chem 32:33–177. doi: 10.1016/j.progsolidstchem.2004.08.001 CrossRefGoogle Scholar
  3. Castagnola NB, Kropf AJ, Marshall CL (2005) Studies of Cu-ZSM-5 by X-ray absorption spectroscopy and its application for the oxidation of benzene to phenol by air. Appl Catal A Gen 290:110–122. doi: 10.1016/j.apcata.2005.05.022
  4. Černigoj U, Kete M, Štangar UL (2010) Development of a fluorescence-based method for evaluation of self-cleaning properties of photocatalytic layers. Catal Today 151:46–52. doi: 10.1016/j.cattod.2010.03.043 CrossRefGoogle Scholar
  5. Chiang K, Amal R, Tran T (2002) Photocatalytic degradation of cyanide using titanium dioxide modified with copper oxide. Adv Environ Res 6:471–485. doi: 10.1016/S1093-0191(01)00074-0 CrossRefGoogle Scholar
  6. Choi W, Termin A, Hoffmann MR (1994) The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. J Phys Chem 98:13669–13679. doi: 10.1021/j100102a038 CrossRefGoogle Scholar
  7. Choudhury B, Dey M, Choudhury A (2013) Defect generation, d-d transition, and band gap reduction in Cu-doped TiO2 nanoparticles. Int Nano Lett 3:25. doi: 10.1186/2228-5326-3-25 CrossRefGoogle Scholar
  8. Dahl M, Liu Y, Yin Y (2014) Composite titanium dioxide nanomaterials. Chem Rev 114:9853–9889. doi: 10.1021/cr400634p CrossRefGoogle Scholar
  9. Di Paola A, Marcì G, Palmisano L et al (2002) Preparation of polycrystalline TiO2 photocatalysts impregnated with various transition metal ions: characterization and photocatalytic activity for the degradation of 4-nitrophenol. J Phys Chem B 106:637–645. doi: 10.1021/jp013074l CrossRefGoogle Scholar
  10. Domingos RF, Baalousha MA, Ju-Nam Y et al (2009) Characterizing manufactured nanoparticles in the environment: multimethod determination of particle sizes. Environ Sci Technol 43:7277–7284. doi: 10.1021/es900249m CrossRefGoogle Scholar
  11. Dong H, Zeng G, Tang L et al (2015) An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures. Water Res 79:128–146. doi: 10.1016/j.watres.2015.04.038 CrossRefGoogle Scholar
  12. Frenkel AI, Korshin G V., Ankudinov AL (2000) XANES study of Cu -binding sites in aquatic humic substances. Environ Sci Technol 34:2138–2142. doi: 10.1021/es990561u
  13. Fu X, Clark LA, Yang Q, Anderson MA (1996) Enhanced photocatalytic performance of titania-based binary metal oxides: TiO2/SiO2 and TiO2/ZrO2. Environ Sci Technol 30:647–653. doi: 10.1021/es950391v CrossRefGoogle Scholar
  14. Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C Photochem Rev 1:1–21. doi: 10.1016/S1389-5567(00)00002-2 CrossRefGoogle Scholar
  15. Goldstein J, Newbury DE, Joy DC, et al (2003) Scanning electron microscopy and X-ray microanalysisGoogle Scholar
  16. Gupta VK, Ali I, Saleh TA et al (2012) Chemical treatment technologies for waste-water recycling—an overview. RSC Adv 2:6380. doi: 10.1039/c2ra20340e CrossRefGoogle Scholar
  17. Hernández-Alonso MD, Tejedor-Tejedor I, Coronado JM et al (2006) Sol–gel preparation of TiO2–ZrO2 thin films supported on glass rings: influence of phase composition on photocatalytic activity. Thin Solid Films 502:125–131. doi: 10.1016/j.tsf.2005.07.256 CrossRefGoogle Scholar
  18. Hoffmann MR, Martin ST, Choi W, Bahnemannt DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96. doi: 10.1021/cr00033a004 CrossRefGoogle Scholar
  19. Ilkhechi NN, Ahmadi A, Kaleji BK (2015a) Optical and structural properties of nanocrystalline anatase powders doped by Zr, Si and Cu at high temperature. Opt Quant Electron 47:2423–2434. doi: 10.1007/s11082-015-0120-7 CrossRefGoogle Scholar
  20. Ilkhechi NN, Kaleji BK, Salahi E, Hosseinabadi N (2015b) Comparison of optical and structural properties of Cu doped and Cu/Zr co-doped TiO2 nanopowders calcined at various temperatures. J Sol-Gel Sci Technol 765–773. doi: 10.1007/s10971–015–3661-0Google Scholar
  21. Khan AI, O’Hare D (2002) Intercalation chemistry of layered double hydroxides: recent developments and applications. J Mater Chem 12:3191–3198. doi: 10.1039/b204076j CrossRefGoogle Scholar
  22. Klosek S, Raftery D (2002) Visible light driven V-doped TiO2 photocatalyst and its photooxidation of ethanol. J Phys Chem B 105:2815–2819. doi: 10.1021/jp004295e CrossRefGoogle Scholar
  23. Kubacka A, Fernández-García M, Colón G (2012) Advanced nanoarchitectures for solar photocatalytic applications. Chem Rev 112:1555–1614. doi: 10.1021/cr100454n
  24. Li G, Dimitrijevic NM, Chen L et al (2008) Role of surface/interfacial Cu 2+ sites in the photocatalytic activity of coupled CuO–TiO2 nanocomposites. J Phys Chem C 112:19040–19044. doi: 10.1021/jp8068392 CrossRefGoogle Scholar
  25. Lin W, Frei H (2005) Photochemical CO2 splitting by metal-to-metal charge-transfer excitation in mesoporous ZrCu(I)-MCM-41 silicate sieve. J Am Chem Soc 127:1610–1611. doi: 10.1021/ja040162l CrossRefGoogle Scholar
  26. Lytle FW, Greegor RB, Panson AJ (1988) Discussion of x-ray-absorption near-edge structure: Application to Cu in the high-T superconductors La Sr CuO and YBa Cu O . Phys Rev B 37:1550–1562. doi: 10.1103/PhysRevB.37.1550
  27. Manceau A, Matynia A (2010) The nature of Cu bonding to natural organic matter. Geochim Cosmochim Acta 74:2556–2580. doi: 10.1016/j.gca.2010.01.027
  28. Morozov IV, Znamenkov KO, Korenev YM, Shlyakhtin OA (2003) Thermal decomposition of Cu(NO3)2x3H2O at reduced pressures. Thermochim Acta 403:173–179. doi: 10.1016/S0040-6031(03)00057-1 CrossRefGoogle Scholar
  29. Nagaveni K, Hegde MS, Madras G (2004) Structure and photocatalytic activity of Ti1-xMxO2±δ (M = W, V, Ce, Zr, Fe, and Cu) synthesized by solution combustion method. J Phys Chem B 108:20204–20212. doi: 10.1021/jp047917v CrossRefGoogle Scholar
  30. Paulauskas IE, Modeshia DR, Ali TT et al (2013) Photocatalytic activity of doped and undoped titanium dioxide nanoparticles synthesised by flame spray pyrolysis. Platin Met Rev 57:32–43. doi: 10.1595/147106713X659109 CrossRefGoogle Scholar
  31. Phenrat T, Saleh N, Sirk K et al (2008) Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes: adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation. J Nanopart Res 10:795–814. doi: 10.1007/s11051-007-9315-6 CrossRefGoogle Scholar
  32. Pliekhov O, Arčon I, Tušar NN, Štangar UL (2016) Photocatalytic activity of zirconium- and manganese-codoped titania in aqueous media: the role of the metal dopant and its incorporation site. ChemCatChem. doi: 10.1002/cctc.201600206 Google Scholar
  33. Ravel B, Newville M (2005) ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Radiat 12:537–41. doi: 10.1107/S0909049505012719
  34. Rehr JJ, Albers RC, Zabinsky SI (1992) High-order multiple-scattering calculations of x-rayabsorption fine structure. Phys Rev Lett 69:3397–3400. doi: 10.1103/PhysRevLett.69.3397
  35. Sahu M, Biswas P (2011) Single-step processing of copper-doped titania nanomaterials in a flame aerosol reactor. Nanoscale Res Lett 6:441. doi: 10.1186/1556-276X-6-441 CrossRefGoogle Scholar
  36. Schneider J, Matsuoka M, Takeuchi M et al (2014) Understanding TiO2 photocatalysis : mechanisms and materials. Chem Rev 114:9919–9986. doi: 10.1021/cr5001892 CrossRefGoogle Scholar
  37. Slamet, Nasution HW, Purnama E et al (2005) Photocatalytic reduction of CO2 on copper-doped titania catalysts prepared by improved-impregnation method. Catal Commun 6:313–319. doi: 10.1016/j.catcom.2005.01.011 CrossRefGoogle Scholar
  38. Su K, Ai Z, Zhang L (2012) Efficient visible light-driven photocatalytic degradation of pentachlorophenol with Bi2O3/TiO2–xBx. J Phys Chem C 116:17118–17123. doi: 10.1021/jp305432g CrossRefGoogle Scholar
  39. Taurozzi JS, Hackley VA, Wiesner MR (2012) Preparation of a nanoscale TiO2 aqueous dispersion for toxicological or environmental testing. NIST Spec Publ 1200:3. doi: 10.6028/NIST.SP.1200 Google Scholar
  40. Thiruvenkatachari R, Kwon TO, Jun JC et al (2007) Application of several advanced oxidation processes for the destruction of terephthalic acid (TPA. J Hazard Mater 142:308–314. doi: 10.1016/j.jhazmat.2006.08.023 CrossRefGoogle Scholar
  41. Wang Y, Shi R, Lin J, Zhu Y (2010) Significant photocatalytic enhancement in methylene blue degradation of TiO2 photocatalysts via graphene-like carbon in situ hybridization. Appl Catal B Environ 100:179–183. doi: 10.1016/j.apcatb.2010.07.028 CrossRefGoogle Scholar
  42. Wendlandt WW (1956) The thermolysis of the rare earth and other metal nitrates. Anal Chim Acta 15:435–439. doi: 10.1016/0003-2670(56)80082-2 CrossRefGoogle Scholar
  43. WHO/UNICEF (2016) Reports of world helth organization.| Progress on sanitation and drinking water. http://www.who.int/water_sanitation_health/monitoring/jmp-2015-update/en/
  44. Zorn ME, Tompkins DT, Zeltner WA, Anderson MA (1999) Photocatalytic oxidation of acetone vapor on TiO2/ZrO2 thin films. Appl Catal B Environ 23:1–8. doi: 10.1016/S0926-3373(99)00067-3 CrossRefGoogle Scholar
  45. Zorn ME, Tompkins DT, Zeltner WA, Anderson MA (2000) Catalytic and photocatalytic oxidation of ethylene on titania-based thin-films. Environ Sci Technol 34:5206–5210. doi: 10.1021/es991250m CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • O. Pliekhova
    • 1
  • I. Arčon
    • 1
    • 2
  • O. Pliekhov
    • 3
  • N. Novak Tušar
    • 1
    • 3
  • U. Lavrenčič Štangar
    • 1
    Email author
  1. 1.University of Nova GoricaNova GoricaSlovenia
  2. 2.Jozef Stefan InstituteLjubljanaSlovenia
  3. 3.National Institute of ChemistryLjubljanaSlovenia

Personalised recommendations