Advertisement

Environmental Science and Pollution Research

, Volume 23, Issue 24, pp 25191–25199 | Cite as

Hematological, biochemical, and toxicopathic effects of subchronic acetamiprid toxicity in Wistar rats

  • Sana Chakroun
  • Lobna Ezzi
  • Intissar Grissa
  • Emna Kerkeni
  • Fadoua Neffati
  • Rakia Bhouri
  • Amira sallem
  • Mohamed Fadhel Najjar
  • Mohssen Hassine
  • Meriem Mehdi
  • Zohra Haouas
  • Hassen Ben Cheikh
Research Article

Abstract

Acetamiprid is one of the most widely used neonicotinoids. This study investigates toxic effects of repeated oral administration of three doses of acetamiprid (1/20, 1/10, and 1/5 of LD50) during 60 days. For this, male Wistar rats were divided into four different groups. Hematological, biochemical, and toxicopathic effects of acetamiprid were evaluated. According to the results, a significant decrease in the body weight gain at the highest dose 1/5 of LD50 of acetamiprid was noticed. An increase in the relative liver weight was also observed at this dose level. The hematological constituents were affected. A significant decrease in RBC, HGB, and HCT in rats treated with higher doses of acetamiprid (1/10 and 1/5 of LD50) was noted. However, a significant increase in WBC and PLT were observed at the same doses. Furthermore, acetamiprid induced liver toxicity measured by the increased activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphates (ALPs), and lactate dehydrogenase (LDH) which may be due to the loss of hepatic membrane architecture and hepatocellular damage. In addition, exposure to acetamiprid resulted in a significant decrease in the levels of superoxide dismutase and catalase activities (p ≤ 0.01) with concomitant increase in lipid peroxidation in rat liver. These findings highlight the subchronic hepatotoxicity of acetamiprid.

Keywords

Acetamiprid Hematological and biochemical parameters Hepatotoxicity Oxidative stress 

Notes

Acknowledgments

This work was supported by funds allocated to the Research Unit of Histology and Genetic UR12ES10 by the “Ministère Tunisien de l’Enseignement Supérieur et de la Recherche Scientifique”. The authors thank the personnel of Laboratories of Biochemistry and Hematology, University Hospital of Monastir, for their help in determination of biochemical and hematological parameters.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Adaramoye OA, Osaimoje DO, Akinsanya AM, Nneji CM, Fafunso MA, Ademowo OG (2008) Changes in antioxidant status and biochemical indices after acute administration of artemether, artemether-lumefantrine and halofantrine in rats. Basic & Clinical Pharmacology & Toxicology 102:412–418CrossRefGoogle Scholar
  2. Akhgari M, Abdollahi M, Kebryaeezadeh A, Hosseini R, Sabzevari O (2003) Biochemical evidence for free radical-induced lipid peroxidation as a mechanism for subchronic toxicity of malathion in blood and liver of rats. Human & Experimental Toxicology 22:205–211CrossRefGoogle Scholar
  3. Akiyama Y, Yoshioka N, Tsuji M (2002) Pesticide residues in agricultural products monitored in Hyogo prefecture, Japan, FYs 1995-1999. J AOAC Int 85:692–703Google Scholar
  4. Awad ME, Abdel-Rahman MS, Hassan SA (1998) Acrylamide toxicity in isolated rat hepatocytes. Toxicol in Vitro 12:699–704CrossRefGoogle Scholar
  5. Bhardwaj S, Srivastava MK, Kapoor U, Srivastava LP (2010) A 90 days oral toxicity of imidacloprid in female rats: morphological, biochemical and histopathological evaluations. Food Chem Toxicol 48:1185–1190CrossRefGoogle Scholar
  6. Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310CrossRefGoogle Scholar
  7. Cavas T, Cinkilic N, Vatan O, Yilmaz D, Coskun M (2012) In vitro genotoxicity evaluation of acetamiprid in CaCo-2 cells using the micronucleus, comet and gamma H2AX foci assays. Pestic Biochem Physiol 104:212–217CrossRefGoogle Scholar
  8. Cavas T, Cinkilic N, Vatan O, Yilmaz D (2014) Effects of fullerenol nanoparticles on acetamiprid induced cytoxicity and genotoxicity in cultured human lung fibroblasts. Pestic Biochem Physiol 114:1–7CrossRefGoogle Scholar
  9. Celik I, Yilmaz Z, Turkoglu V (2009) Hematotoxic and hepatotoxic effects of dichlorvos at sublethal dosages in rats. Environ Toxicol 24:128–132CrossRefGoogle Scholar
  10. Clairbone A (1985) Catalase activity. Handbook of methods for oxygen radical research. CRC Press, Boca Raton, FLGoogle Scholar
  11. Devan RKS, Mishra A, Prabu PC, Mandal TK, Panchapakesan S (2015) Sub-chronic oral toxicity of acetamiprid in Wistar rats. Toxicol Environ Chem 97:1236–1252CrossRefGoogle Scholar
  12. Flohe L, Gunzler WA (1984) Assays of glutathione peroxidase. Methods Enzymol 105:114–121CrossRefGoogle Scholar
  13. Ford KA, Gulevich AG, Swenson TL, Casida JE (2011) Neonicotinoid insecticides: oxidative stress in planta and metallo-oxidase inhibition. J Agric Food Chem 59:4860–4867CrossRefGoogle Scholar
  14. Grissa I, Elghoul J, Ezzi L, Chakroun S, Kerkeni E, Hassine M, El Mir L, Mehdi M, Ben Cheikh H, Haouas Z (2015) Anemia and genotoxicity induced by sub-chronic intragastric treatment of rats with titanium dioxide nanoparticles. Mutat Res Genet Toxicol Environ Mutagen 794:25–31CrossRefGoogle Scholar
  15. Hamadache M, Benkortbi O, Hanini S, Amrane A, Khaouane L, SI Moussa C (2016) A quantitative structure activity relationship for acute oral toxicity of pesticides on rats: validation, domain of application and prediction. J Hazard Mater 303:28–40CrossRefGoogle Scholar
  16. Ince S, Kucukkurt I, Demirel HH, Turkmen R, Zemheri F, Akbel E (2013) The role of thymoquinone as antioxidant protection on oxidative stress induced by imidacloprid in male and female Swiss albino mice. Toxicol Environ Chem 95:318–329CrossRefGoogle Scholar
  17. Kapoor U, Srivastava MK, Bhardwaj S, Srivastava LP (2010) Effect of imidacloprid on antioxidant enzymes and lipid peroxidation in female rats to derive its No Observed Effect Level (NOEL. J Toxicol Sci 35:577–581CrossRefGoogle Scholar
  18. Mansour SA, Mossa AH (2010) Oxidative damage, biochemical and histopathological alterations in rats exposed to chlorpyrifos and the antioxidant role of zinc. Pestic Biochem Physiol 96:14–23CrossRefGoogle Scholar
  19. Martensson L, Nilsson R, Ohlsson T, Sjogren H, Strand S, Tennvall J (2010) High-dose radioimmunotherapy combined with extracorporeal depletion in a syngeneic rat tumor model. Cancer 116:1043–1052CrossRefGoogle Scholar
  20. Merhi M, Demur C, Racaud-Sultan C, Bertrand J, Canlet C, Estrada FBY, Gamet-Payrastre L (2010) Gender-linked haematopoietic and metabolic disturbances induced by a pesticide mixture administered at low dose to mice. Toxicology 267:80–90CrossRefGoogle Scholar
  21. Mohany M, Badr G, Refaat I, El-Feki M (2011) Immunological and histological effects of exposure to imidacloprid insecticide in male albino rats. African. J Pharm Pharmacol 5:2106–2114Google Scholar
  22. Pisa LW, Amaral-Rogers V, Belzunces LP, Bonmatin JM, Downs CA, Goulson D, Kreutzweiser DP, Krupke C, Liess M, McField M, Morrissey CA, Noome DA, Settele J, Simon-Delso N, Stark JD, Van der Sluijs JP, Van Dyck H, Wiemers M (2015) Effects of neonicotinoids and fipronil on non-target invertebrates. Environ Sci Pollut Res 22:68–102CrossRefGoogle Scholar
  23. Pramanik SK, Bhattacharyya J, Dutta S, Dey PK, Bhattacharyya A (2006) Persistence of acetamiprid in/on mustard (Brassica juncea L. Bull Environ Contam Toxicol 76:356–360CrossRefGoogle Scholar
  24. Ranjbar A, Pasalar P, Abdollahi M (2002) Induction of oxidative stress and acetylcholinesterase inhibition in organophosphorous pesticide manufacturing workers. Human & Experimental Toxicology 21:179–182CrossRefGoogle Scholar
  25. Sanyal D, Chakma D, Alam S (2008) Persistence of a neonicotinoid insecticide, acetamiprid on chili (Capsicum annum l. Bull Environ Contam Toxicol 81:365–368CrossRefGoogle Scholar
  26. Shadnia S, Azizi E, Hosseini R, Khoei S, Fouladdel S, Pajoumand A, Jalali N, Abdollahi M (2005) Evaluation of oxidative stress and genotoxicity in organophosphorus insecticide formulators. Human & Experimental Toxicology 24:439–445CrossRefGoogle Scholar
  27. Sharma Y, Bashir S, Irshad M, Gupta SD, Dogra TD (2005) Effects of acute dimethoate administration on antioxidant status of liver and brain of experimental rats. Toxicology 206:49–57CrossRefGoogle Scholar
  28. Shimomura M, Yokota M, Ihara M, Akamatsu M, Sattelle DB, Matsuda K (2006) Role in the selectivity of neonicotinoids of insect-specific basic residues in loop D of the nicotinic acetylcholine receptor agonist binding site. Mol Pharmacol 70:1255–1263CrossRefGoogle Scholar
  29. Singh TB, Mukhopadhayay SK, Sar TK, Ganguly S (2012) Acetamiprid induces toxicity in mice under experimental conditions with prominent effect on the hematobiochemical parameters. J Drug Metab Toxicol 3:6Google Scholar
  30. Speck-Planche A, Kleandrova VV, Luan F, Cordeiro M, ND S (2012) Predicting multiple ecotoxicological profiles in agrochemical fungicides: a multi-species chemoinformatic approach. Ecotoxicol Environ Saf 80:308–313CrossRefGoogle Scholar
  31. Tang CF, Liu YG, Zeng GM, Li X, WH X, Li CF, Yuan XZ (2005) Effects of exogenous spermidine on antioxidant system responses of Typha latifolia L. Under Cd2+ stress. J Integr Plant Biol 47:428–434CrossRefGoogle Scholar
  32. Todani M, Kaneko T, Hayashida H, Kaneda K, Tsuruta R, Kasaoka S, Maekawa T (2008) Acute poisoning with neonicotinoid insecticide acetamiprid. The Japanese journal of toxicology 21:387–390Google Scholar
  33. Tomaszewska E, Winiarska-Mieczan A, Dobrowolski P (2015) The lack of protective effects of tea supplementation on liver and jejunal epithelium in adult rats exposed to cadmium and lead. Environ Toxicol Pharmacol 40:708–714CrossRefGoogle Scholar
  34. Tomizawa M, Casida JE (2005) Neonicotinoid insecticide toxicology: mechanisms of selective action. Annu Rev Pharmacol Toxicol 45:247Google Scholar
  35. Toor HK, Sangha GK, Khera KS (2013) Imidacloprid induced histological and biochemical alterations in liver of female albino rats. Pestic Biochem Physiol 105:1–4CrossRefGoogle Scholar
  36. Undeger U, Institoris L, Siroki O, Nehez M, Desi I (2000) Simultaneous geno- and immunotoxicological investigations for early detection of organophosphate toxicity in rats. Ecotoxicol Environ Saf 45:43–48CrossRefGoogle Scholar
  37. Van der Sluijs JP et al. (2015) Conclusions of the Worldwide Integrated Assessment on the risks of neonicotinoids and fipronil to biodiversity and ecosystem functioning. Environ Sci Pollut Res 22:148–154CrossRefGoogle Scholar
  38. Wang X, Zhai W (1988) Cellular and biochemical in bronchoalveolar lavage fluids of rats exposed to fenvalerate. Zhongguo Yaolixue YuDulixue Zoghi 2:271–276Google Scholar
  39. Wang J, Wang J, Wang G, Zhu L, Wang J (2016) DNA damage and oxidative stress induced by imidacloprid exposure in the earthworm Eisenia fetida. Chemosphere 144:510–517CrossRefGoogle Scholar
  40. Yamada T (1997) A novel insecticide, acetamiprid. Abstr Pap Am Chem Soc 214:17-AGROGoogle Scholar
  41. Yao XH, Min H, Lv ZM (2006) Response of superoxide dismutase, catalase, and ATPase activity in bacteria exposed to acetamiprid. Biomed Environ Sci 19:309–314Google Scholar
  42. Yousef MI, El-Demerdash FM, Kamel KI, Al-Salhen KS (2003) Changes in some hematological and biochemical indices of rabbits induced by isoflavones and cypermethrin. Toxicology 189:223–234CrossRefGoogle Scholar
  43. Zhang R, Niu Y, Li Y, Zhao C, Song B, Li Y, Zhou Y (2010) Acute toxicity study of the interaction between titanium dioxide nanoparticles and lead acetate in mice. Environ Toxicol Pharmacol 30:52–60CrossRefGoogle Scholar
  44. Zhang JJ, Wang Y, Xiang HY, Li MX, Li WH, Ma K, Wang XZ, Zhang JH (2011) Oxidative stress: role in acetamiprid-induced impairment of the male mice reproductive system. Agric Sci China 10:786–796CrossRefGoogle Scholar
  45. Zhang JJ, Wang Y, Xiang HY, Jia HZ, Wang XZ (2012) Nephrotoxicity of acetamiprid on male mice and the rescue role of vitamin E. J Anim Vet Adv 11:2721–2726CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Sana Chakroun
    • 1
  • Lobna Ezzi
    • 1
  • Intissar Grissa
    • 1
  • Emna Kerkeni
    • 1
  • Fadoua Neffati
    • 2
  • Rakia Bhouri
    • 1
  • Amira sallem
    • 1
  • Mohamed Fadhel Najjar
    • 2
  • Mohssen Hassine
    • 3
  • Meriem Mehdi
    • 1
  • Zohra Haouas
    • 1
  • Hassen Ben Cheikh
    • 1
  1. 1.Laboratory of Histology and Cytogenetic (Research Unit of Genetic, Genotoxicity and Childhood Illness UR12ES10), Faculty of MedicineUniversity of MonastirMonastirTunisia
  2. 2.Laboratory of Biochemistry and ToxicologyFattouma Bourguiba University Hospital of MonastirMonastirTunisia
  3. 3.Laboratory of HematologyFattouma Bourguiba University Hospital of MonastirMonastirTunisia

Personalised recommendations