Environmental Science and Pollution Research

, Volume 24, Issue 33, pp 25500–25512 | Cite as

Remediation by chemical reduction in laboratory mesocosms of three chlordecone-contaminated tropical soils

  • Christophe MouvetEmail author
  • Marie-Christine Dictor
  • Sébastien Bristeau
  • Dominique Breeze
  • Anne Mercier
4th International Symposium on Environmental Biotechnology and Engineering-2014


Chlordecone (CLD), a highly persistent organochlorine pesticide commonly encountered in French West Indies (FWI) agricultural soils, represents a major source of contamination of FWI ecosystems. The potential of chemical reduction for remediation of CLD-contaminated soil has been investigated in laboratory pilot-scale 80 kg mesocosms for andosol, ferralsol, and nitisol from FWI banana plantations. Six cycles consisting of a 3-week reducing phase followed by a 1-week oxidizing phase were applied, with 2 % (dw/dw) Daramend® (organic plant matter fortified with zero valent iron) added at the start of each cycle. Complementary amendments of zero valent iron and zinc (total of 3 % dw/dw) were added at the start of the first three cycles. After the 6-month treatment, the CLD soil concentration was lowered by 74 % in nitisol, 71 % in ferralsol, and 22 % in andosol. Eleven CLD-dechlorinated transformation products, from mono- to penta-dechlorinated, were identified. None of them accumulated over the duration of the experiment. Six of the seven ecotoxicological tests applied showed no difference between the control and treated soils. The treatment applied in this study may offer a means to remediate CLD-contaminated soils, especially nitisol and ferralsol.


Chlordecone Chemical reduction Soil remediation Daramend® Zero-valent iron 



The help of Dr. Y. M. Cabidoche in selecting the plots for sampling the soils and contacting their owners was greatly appreciated. The input of W. Sowocool was decisive in the identification of the transformation products of chlordecone. Scientific collaboration with Dr. Jim Mueller (PROVECTUS Environmental products, formerly FMC Corporation and Adventus) is gratefully acknowledged. Technical and scientific inputs from Laurent Thannberger (Valgo) were very much appreciated. Thanks for technical assistance to Pierre Gallé-Cavalloni, Pascal Auger, Mickael Beaulieu, Laure Lereau and Hafida Tris.

The results presented here were obtained through financing by the French Ministry of Environment (contract 2010 SU 0006693 and 2100598309).

Supplementary material

11356_2016_7582_MOESM1_ESM.pptx (63 kb)
SM1 Fig. S1 (PPTX 62 kb)
11356_2016_7582_MOESM2_ESM.docx (69 kb)
SM2 Fig. S1 (DOCX 69 kb)
11356_2016_7582_MOESM3_ESM.docx (17 kb)
SM3 Table S1 (DOCX 17 kb)
11356_2016_7582_MOESM4_ESM.docx (19 kb)
SM3 Table S2 (DOCX 18 kb)
11356_2016_7582_MOESM5_ESM.docx (111 kb)
SM4 Table S1 and Fig. S1 (DOCX 111 kb)


  1. Abbey AMI, Beaudette LA, Lee H (2003) Polychlorinated biphenyl (PCB) degradation and persistence of a gfp-marked Ralstonia eutropha H850 in PCB-contaminated soil. Appl Microbiol Biotechn 63(2):222–230CrossRefGoogle Scholar
  2. Achard R, Perrier X, Chabrier C, Lassoudière A (2003) Cartographie du risque de pollution des sols de Martinique par les organochlorés. Méthodologie d’échantillonnage à la parcelle, Rapport de Phase1; Brgm / RP-52464-FRGoogle Scholar
  3. Achard R, Cabidoche YM, Caron A, Nelson R, Duféal D, Lafont A, Lesueur-Jannoyer M (2007) Contamination des racines et tubercules cultivés sur sol pollué par la chlordécone aux Antilles. Les cahiers du Pram 7:45–50Google Scholar
  4. AFNOR standard method NF EN 14735 (2006) Characterization of waste—preparation of waste samples for ecotoxicity testsGoogle Scholar
  5. Andreu V, Picó Y (1991) Determination of pesticides and their degradation products in soil: critical review and comparison of methods. Trac-Trend Anal Chem 23(10–11):772–789Google Scholar
  6. Baran N, Barras AV (2008) Processus de transfert des produits phytosanitaires du sol vers les eaux souterraines en Martinique. Phase 2: études de processus de sorption et de dégradation dans les sols et phase 3: préconisations de suivi dans les eaux souterraines; BRGM RP56658-FRGoogle Scholar
  7. Barceló D (2004) Applications of gas chromatography-mass spectrometry in monitoring environmentally important compounds. Trac-Trend Anal Chem 10(10):323–329CrossRefGoogle Scholar
  8. Belghit H (2014) Développements analytiques et mécanismes physico-chimiques impliqués dans la réduction in situ de la chlordécone dans les sols antillais. PhD Dissertation, University of Orléans (France)Google Scholar
  9. Belghit H, Colas C, Bristeau S, Mouvet C, Maunit B (2015) Liquid chromatography – high-resolution mass spectrometry for identifying aqueous chlordecone-hydrate dechlorinated transformation products formed by reaction with zero-valent iron. Int J Env Anal Chem 95(2):93–105CrossRefGoogle Scholar
  10. Bertrand JA, Abarnou A, Bocquené G, Chiffoleau JF, Reynal L (2009) Diagnostic de la contamination chimique de la faune halieutique des littoraux des Antilles françaises. Campagnes 2008 en Martinique et en Guadeloupe. Ifremer, Martinique. Accessed 14 Dec 2015
  11. Bocquené G, Franco A (2005) Pesticide contamination of the coastline of Martinique. Mar Poll Bull 51(5–7):612–619CrossRefGoogle Scholar
  12. Bristeau S, Amalric L, Mouvet C (2014) Validation of chlordecone analysis for native and remediated French West Indies soils with high organic matter content. Anal Bioanal Chem 406(4):1073–1080CrossRefGoogle Scholar
  13. Cabidoche YM, Lesueur-Jannoyer M (2012) Contamination of harvested organs in root crops grown on chlordecone-polluted soils. Pedosphere 22(4):562–571CrossRefGoogle Scholar
  14. Cabidoche YM, Achard R, Cattan P, Clermont-Dauphin C, Massat F, Sansoulet J (2009) Long-term pollution by chlordecone of tropical volcanic soils in the French West Indies: a simple leaching model accounts for current residue. Environ Pollut 157(5):1697–1705CrossRefGoogle Scholar
  15. Carver RA, Griffith FD (1979) Determination of CLD dechlorination products in finfish, oysters and crustacean. J Agric Food Chem 27(5):1035–1037CrossRefGoogle Scholar
  16. Chevallier T, Woignier T, Toucet J, Blanchart E (2010) Organic carbon stabilization in the fractal pore structure of Andosols. Geoderma 159(1–2):182–188CrossRefGoogle Scholar
  17. Clostre F, Lesueur-Jannoyer M, Cabidoche YM (2010) Remédiation à la pollution par la chlordécone aux Antilles. Accessed 14 Dec 2015
  18. Clostre F, Lesueur-Jannoyer M, Achard R, Letourmy P, Cabidoche YM, Cattan P (2014) Decision support tool for soil sampling of heterogeneous pesticide (chlordecone) pollution. Env Sci Poll Res 21(3):1980–1992CrossRefGoogle Scholar
  19. Coat S, Bocquené G, Godard E (2006) Contamination of some aquatic species with the organochlorine pesticide chlordecone in Martinique. Aquat Living Resour 19(2):181–187CrossRefGoogle Scholar
  20. Coat S, Monti D, Legendre P, Bouchon C, Massat F, Lepoint G (2011) Organochlorine pollution in tropical rivers (Guadeloupe): role of ecological factors in food web bioaccumulation. Environ Pollut 159(6):1692–1701CrossRefGoogle Scholar
  21. Colombano S, Blanc C, Guérin V, Chevrier B (2009) Examen des possibilités de traitement de la chlordécone dans les sols notamment sur les aires d’alimentation des captages d’eau potable, Brgm/RP-57708-FRGoogle Scholar
  22. Dallaire R, Muckle G, Rouget F, Kadhel P, Bataille H, Guldner L, et al. (2012) Cognitive, visual, and motor development of 7-month-old Guadeloupean infants exposed to chlordecone. Environ Res 118:79–85CrossRefGoogle Scholar
  23. Devault DA, Laplanche C, Pascaline H, Bristeau S, Mouvet C, Macarie H (2016) Natural transformation of chlordecone into 5b-hydrochlordecone in French West Indies soils: statistical evidence for investigating long-term persistence of organic pollutants. Environ Sci Poll Res Int 23(1):81–97CrossRefGoogle Scholar
  24. Dolfing J, Novak I, Archelas A, Macarie H (2012) Gibbs free energy of formation of chlordecone and potential degradation products: implications for remediation strategies and environmental fate. Environ Sci Technol 46(15):8131–8139CrossRefGoogle Scholar
  25. Elgh Dalgren K, Waara S, Düker A, von Kronhelm T, van Hees PAW (2009) Anaerobic bioremediation of a soil with mixed contaminants: explosives degradation and influence on heavy metal distribution, monitored as changes in concentration and toxicity. Water Air Soil Poll 202(1–4):301–313CrossRefGoogle Scholar
  26. Fernández-Bayo JD, Saison C, Voltz M, Disko U, Hofmann D, Berns AE (2013) Chlordecone fate and mineralisation in a tropical soil (andosol) microcosm under aerobic conditions. Sci Tot Environ 463-464:395–403CrossRefGoogle Scholar
  27. Fritz M (2009) L’autorisation du Chlordécone en France 1968–1981, Rapport AFSSET. Accessed 14 Dec 2015
  28. Gourcy L, Baran N, Vittecoq B (2009) Improving the knowledge of pesticide transfer processes using age-dating tools (CFC, SF6, 3H) in a volcanic island (Martinique, French West Indies. J Contam Hydrol 108(3–4):107–117CrossRefGoogle Scholar
  29. Grosell M, Gerdes RM, Brix KV (2006) Chronic toxicity of lead to three freshwater invertebrates - Brachionus calyciflorus, Chironomus tentans, and Lymnaea stagnalis. Environ Toxicol Chem 25(1):97–104CrossRefGoogle Scholar
  30. Harless RL, Harris DE, Sovocool GW, Zehr RD, Wilson NK, Oswald EO (1978) Mass-spectrometric analyses and characterization of chlordecone in environmental and human samples. Biomed Mass Spectrom 5(3):232–237CrossRefGoogle Scholar
  31. ISO standard method 11269-2 (2006) Soil quality—determination of the effects of pollutants on soil flora. Part II: Effects of chemicals on the emergence and growth of higher plantsGoogle Scholar
  32. ISO standard method 11348-1 (2009) Water quality—determination of the inhibitory effect on the light emission of Vibrio fischeri (Luminescent bacteria test). Part 1: Method using freshly prepared bacteriaGoogle Scholar
  33. ISO standard method 11465 (1994) Soil quality—determination of dry matter and water content on a mass basis—gravimetric methodGoogle Scholar
  34. ISO standard method 20666 (2009) Determination of the chronic toxicity to Brachionus calyciflorus in 48 hGoogle Scholar
  35. ISO standard method 21268-2 (2009) Soil quality—leaching procedures for subsequent chemical and ecotoxicological testing of soil and soil materials. Part 2: Batch test using a liquid to solid ratio of 10 L/kg dry matterGoogle Scholar
  36. ISO standard method 6341 (1996) Water quality—determination of the inhibition of the mobility of Daphnia magna Straus (Cladocera, Crustacea)—acute toxicity testGoogle Scholar
  37. Joly PB (2010) La saga du chlordécone aux Antilles françaises. Reconstruction chronologique 1968–2008. Rapport INRA Sens. Accessed 14 Dec 2015
  38. Jondreville C, Lavigne A, Jurjanz S, Dalibard C, Liabeuf JM, Clostre F, Lesueur-Jannoyer M (2014) Contamination of free-range ducks by chlordecone in Martinique (French West Indies): a field study. Sci Tot Environ 493:336–341CrossRefGoogle Scholar
  39. Journal Officiel de la République Française (2005) Arrêté du 5 octobre 2005 relatif à la teneur maximale en chlordécone que ne doivent pas dépasser certaines denrées d’origine animale pour être reconnues propres à la consommation humaine. Accessed 14 Dec 2015
  40. Kadhel P, Monfort C, Costet N, Rouget F, Thomé JP, Multigner L, Cordier S (2014) Chlordecone exposure, length of gestation and risk of preterm birth. Am J Epidemiol 179(5):536–544CrossRefGoogle Scholar
  41. Kim SC, Yang JE, Ok YS, Sik YO, Skousen J, Kim DG, Joo JH (2010) Accelerated metolachlor degradation in soil by zero-valent iron and compost amendments. Bull Environ Contam Toxicol 84(4):459–464CrossRefGoogle Scholar
  42. Maejima Y, Nagatsuka S, Higashi T (2000) Mineralogical composition of iron oxides in red-and yellow-colored soils from southern Japan and Yunnan, China. Soil Sci Plant Nutr 46(3):571–580CrossRefGoogle Scholar
  43. Mercier A, Dictor MC, Harris-Hellal J, Breeze D, Mouvet C (2013) Distinct bacterial community structure of 3 tropical volcanic soils from banana plantations contaminated with chlordecone in Guadeloupe (French West Indies). Chemosphere 92(7):787–794CrossRefGoogle Scholar
  44. Merlin C, Devers M, Crouzet O, Heraud C, Steinberg C, Mougin C, Martin-Laurent F (2014) Characterization of chlordecone-tolerant fungal populations isolated from long-term polluted tropical volcanic soil in the French West Indies. Environ Sci Poll Res 21(7):4914–4927CrossRefGoogle Scholar
  45. Monti D, Coat S (2007) La contamination des espèces d’eau douce. Les Cahiers du Pram 7:29–33Google Scholar
  46. Moser H, Roembke J, Donnevert G, Becker R (2011) Evaluation of biological methods for a future methodological implementation of the hazard criterion H14 “ecotoxic” in the European waste list (2000/532/EC). Waste Manag Res 29(2):180–187CrossRefGoogle Scholar
  47. Mouvet C, Bristeau S (2016) Comparaison du transfert sol-plantes entre la chlordécone et ses produits de dégradation formés par déchloration réductive. Rapport final. BRGM/RP-65275-FR, 50 p., 11 fig., 15 tabl. Accessed 2 June 2016
  48. Multigner L, Ndong JR, Giusti A, Romana M, Delacroix-Maillard H, Cordier S, et al. (2010) Chlordecone exposure and risk of prostate cancer. J Clin Oncol 28(21):3457–3462CrossRefGoogle Scholar
  49. OPECST (Office Parlementaire d’Evaluation des Choix Scientifiques et Technologiques 2009) Rapport sur les impacts de l’utilisation de la Chlordécone et des pesticides aux Antilles : bilan et perspectives d’évolution, par M. Jean-Yves LE DÉAUT, député et Mme Catherine PROCACCIA, sénateur. Accessed 14 Dec 2015
  50. Pandard P, Devillers J, Charissou AM, Poulsen V, Jourdain MJ, Férard JF, et al. (2006) Selecting a battery of bioassays for ecotoxicological characterization of wastes. Sci Total Environ 363(1–3):114–125CrossRefGoogle Scholar
  51. Parfitt RL, Childs CW, Eden DN (1988) Ferrihydrite and allophane in four Andepts from Hawaii and implications for their classification. Geoderma 41(3–4):223–241CrossRefGoogle Scholar
  52. Phillips TM, Lee H, Trevors JT, Seech AG (2004) Mineralization of hexachlorocyclohexane in soil during solid-phase bioremediation. J Ind Microbiol Biotechnol 31(5):216–222CrossRefGoogle Scholar
  53. Phillips TM, Seech AG, Lee H, Trevors JT (2005) Biodegradation of hexachlorocyclohexane (HCH) by microorganisms. Biodegradation 16(4):363–392CrossRefGoogle Scholar
  54. Phillips TM, Lee H, Trevors JT, Seech AG (2006) Full-scale in situ bioremediation of hexachlorocyclohexane-contaminated soil. J Chem Technol Biotechnol 81(3):289–298CrossRefGoogle Scholar
  55. Préfecture de la Région Guadeloupe (2010) Recueil des actes administratifs. Arrêté n° 2010–721 PREF/DSV du 23 juin 2010 réglementant la pêche et la commercialisation des espèces de la faune marine dans certaines zones maritimes de la Guadeloupe. Accessed 14 Dec 2015
  56. R Development Core Team (2011) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3–900051–07-0, URL. Accessed 10 Sept 2015
  57. Radix P, Leonard M, Papantoniou C, Roman G, Saouter E, Gallotti-Schmitt S, et al. (2000) Comparison of four chronic toxicity tests using algae, bacteria, and invertebrates assessed with sixteen chemicals. Ecotoxicol Environ Saf 47(2):186–194CrossRefGoogle Scholar
  58. Römbke J, Moser T, Moser H (2009) Ecotoxicological characterization of 12 incineration ashes (MWI) using 6 laboratory tests. Waste Manag 29(9):2475–2482CrossRefGoogle Scholar
  59. Schaefer CEGR, Fabris JD, Ker JC (2008) Minerals in the clay fraction of Brazilian Latosols (Oxisols): a review. Clay Miner 43:137–154CrossRefGoogle Scholar
  60. Seech A, Bolanos-Shaw K, Hill D, Molin J (2008) In Situ bioremediation of pesticides in soil and groundwater. Remediation 19(1):87–99CrossRefGoogle Scholar
  61. Soileau SD, Moreland DE (1983) Effects of chlordecone and its alteration products on isolated rat liver mitochondria. Toxicol Appl Pharmacol 67(1):89–99CrossRefGoogle Scholar
  62. Thioulouse J, Dray S (2007) Interactive multivariate data analysis in R with the ade4 and ade4TkGUI packages. J Stat Soft 22(5):1–14CrossRefGoogle Scholar
  63. UNEP/POPS/POPRC.1/10 (2005) Stockholm Convention on Persistent Organic Pollutants. Persistent Organic Pollutants Review Committee. First meeting. Geneva, 7–11 November 2005. Accessed 14 Dec 2015
  64. UNEP/POPS/POPRC.3/10 (2007) Projet d’évaluation de la gestion des risques : chlordécone. Accessed 14 Dec 2015
  65. United States Patent (2000) Composition and method for dehalogenation and degradation of halogenated organic contaminants, US Patent N° 5, 618, 427Google Scholar
  66. Woignier T, Fernandes P, Jannoyer-Lesueur M, Soler A (2012) Sequestration of chlordecone in the porous structure of an andosol and effects of added organic matter: an alternative to decontamination. Eur J Soil Sci 63(5):717–723CrossRefGoogle Scholar
  67. Woignier T, Fernandes P, Soler A, Clostre F, Carles C, Rangon L, Lesueur-Jannoyer M (2013) Soil microstructure and organic matter: keys for chlordecone sequestration. J Hazard Mater 262:357–374CrossRefGoogle Scholar
  68. Zhuang L, Gui L, Gillham RW, Landis RC (2014) Laboratory and pilot-scale bioremediation of pentaerythritol tetranitrate (PETN) contaminated soil. J Hazard Mater 264:261–268CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Christophe Mouvet
    • 1
    Email author
  • Marie-Christine Dictor
    • 1
  • Sébastien Bristeau
    • 2
  • Dominique Breeze
    • 2
  • Anne Mercier
    • 1
  1. 1.BRGM – Water, Environment and Ecotechnologies DivisionOrléans, Cedex 2France
  2. 2.BRGM – Laboratory DivisionOrléans, Cedex 2France

Personalised recommendations