Advertisement

Environmental Science and Pollution Research

, Volume 24, Issue 14, pp 12589–12598 | Cite as

Magnetically recoverable TiO2-WO3 photocatalyst to oxidize bisphenol A from model wastewater under simulated solar light

  • S. Dominguez
  • M. Huebra
  • C. Han
  • P. Campo
  • M.N. Nadagouda
  • M.J. Rivero
  • I. Ortiz
  • D. D. Dionysiou
Environmental Photocatalysis and Photochemistry for a Sustainable World: A Big Challenge

Abstract

A novel magnetically recoverable, visible light active TiO2-WO3 composite (Fe3O4@SiO2@TiO2-WO3) was prepared to enable the photocatalyst recovery after the degradation of bisphenol A (BPA) under simulated solar light. For comparison, the photocatalytic activity of other materials such as non-magnetic TiO2-WO3, Fe3O4@SiO2@TiO2, TiO2, and the commercial TiO2 P25 was also evaluated under the studied experimental conditions. The structure and morphology of the synthesized materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), and electron dispersion spectroscopy (EDS). Moreover, Brunauer-Emmett-Teller (BET) surface area and magnetic properties of the samples were determined. The Fe3O4@SiO2@TiO2-WO3 and TiO2-WO3 led to a BPA degradation of 17.50 and 27.92 %, respectively, after 2 h of the simulated solar light irradiation. Even though their activity was lower than that of P25, which degraded completely BPA after 1 h, our catalysts were magnetically separable for their further reuse in the treatment. Furthermore, the influence of the water matrix in the photocatalytic activity of the samples was studied in municipal wastewater. Finally, the identification of reaction intermediates was performed and a possible BPA degradation pathway was proposed to provide a better understanding of the degradation process.

Graphical abstract

Keywords

Bisphenol A (BPA) Degradation pathway Magnetic composite Photocatalysis TiO2 WO3 

Notes

Acknowledgments

Financial support from the Spanish Ministry of Economy and Competitiveness and from FEDER funds (projects CTM2012-33917, CTM2015-69845-R and CTQ2015-66078-R) are gratefully acknowledged (MINECO/FEDER, UE). Sara Dominguez also thanks the FPI postgraduate research grant (BES-2013-064055) and the predoctoral mobility aid for conducting short stays in R&D Centers (EEBB-I-15-09465).

References

  1. Bai S, Liu H, Sun J, Tian Y, Chen S, Song J, Luo R, Li D, Chen A, Liu CC (2015) Improvement of TiO2 photocatalytic properties under visible light by WO3/TiO2 and MoO3/TiO2 composites. Appl Surf Sci 338:61–68. doi: 10.1016/j.apsusc.2015.02.103 CrossRefGoogle Scholar
  2. Barbosa MO, Moreira NFF, Ribeiro AR, Pereira MFR, Silva AMT (2016) Occurrence and removal of organic micropollutants: an overview of the watch list of EU Decision 2015/495. Water Res 94:257–279. doi: 10.1016/j.watres.2016.02.047 CrossRefGoogle Scholar
  3. Carbajo J, García-Muñoz P, Tolosana-Moranchel A, Faraldos M, Bahamonde A (2014) Effect of water composition on the photocatalytic removal of pesticides with different TiO2 catalysts. Environ Sci Pollut Res 21:12233–12240. doi: 10.1007/s11356-014-3111-5 CrossRefGoogle Scholar
  4. Chen J, Qiu F, Xu W, Cao S, Zhu H (2015) Recent progress in enhancing photocatalytic efficiency of TiO2-based materials. Appl Catal A Gen 495:131–140. doi: 10.1016/j.apcata.2015.02.013 CrossRefGoogle Scholar
  5. Chi Y, Yuan Q, Li Y, Zhao L, Li N, Li X, Yan W (2013) Magnetically separable Fe3O4@SiO2@TiO2-Ag microspheres with well-designed nanostructure and enhanced photocatalytic activity. J Hazard Mater 262:404–411. doi: 10.1016/j.jhazmat.2013.08.077 CrossRefGoogle Scholar
  6. Chiang K, Lim TM, Tsen L, Lee CC (2004) Photocatalytic degradation and mineralization of bisphenol A by TiO2 and platinized TiO2. Appl Catal A Gen 261:225–237. doi: 10.1016/j.apcata.2003.11.004 CrossRefGoogle Scholar
  7. Colombo A, Cappelletti G, Ardizzone S, Biraghi I, Bianchi CL, Meroni D, Pirola C, Spadavecchia F (2012) Bisphenol A endocrine disruptor complete degradation using TiO2 photocatalysis with ozone. Environ Chem Lett 10:55–60. doi: 10.1007/s10311-011-0328-0 CrossRefGoogle Scholar
  8. Da Silva JCC, Teodoro JAR, De Cássia Franco Afonso RJ, Aquino SF, Augusti R (2014) Photodegradation of bisphenol A in aqueous medium: monitoring and identification of by-products by liquid chromatography coupled to high-resolution mass spectrometry. Rapid Commun Mass Spectrom 28:987–994. doi: 10.1002/rcm.6863 CrossRefGoogle Scholar
  9. Daghrir R, Drogui P, Robert D (2013) Modified TiO2 for environmental photocatalytic applications: a review. Ind Eng Chem Res 52:3581–3599. doi: 10.1021/ie303468t CrossRefGoogle Scholar
  10. Daskalaki VM, Frontistis Z, Mantzavinos DK (2011) A solar light-induced degradation of bisphenol-a with TiO2 immobilized on Ti. Catal Today 161:110–114. doi: 10.1016/j.cattod.2010.09.018 CrossRefGoogle Scholar
  11. Dimitroula H, Daskalaki VM, Frontistis Z, Kondarides DI, Panagiotopoulou P, Xekoukoulotakis NP, Mantzavinos D (2012) Solar photocatalysis for the abatement of emerging micro-contaminants in wastewater: synthesis, characterization and testing of various TiO2 samples. Appl Catal B: Environ 117–118:283–291. doi: 10.1016/j.apcatb.2012.01.024 CrossRefGoogle Scholar
  12. Dominguez S, Ribao P, Rivero MJ, Ortiz I (2015) Influence of radiation and TiO2 concentration on the hydroxyl radicals generation in a photocatalytic LED reactor. Application to dodecylbenzenesulfonate degradation. Appl Catal B Environ 178:165–169. doi: 10.1016/j.apcatb.2014.09.072 CrossRefGoogle Scholar
  13. Dozzi MV, Artiglia L, Granozzi G, Ohtani B, Selli E (2014) Photocatalytic activity vs structural features of titanium dioxide materials singly doped or codoped with fluorine and boron. J Phys Chem C 118:25579–25589. doi: 10.1021/jp5084696 CrossRefGoogle Scholar
  14. Fagan R, McCormack DE, Dionysiou DD, Pillai SC (2016) A review of solar and visible light active TiO2 photocatalysis for treating bacteria, cyanotoxins and contaminants of emerging concern. Mat Sci Semicon Proc 42:2–14. doi: 10.1016/j.mssp.2015.07.052i CrossRefGoogle Scholar
  15. Fernández-Castro P, Vallejo M, San Román MF, Ortiz I (2015) Insight on the fundamentals of advanced oxidation processes. Role and review of the determination methods of reactive oxygen species. J Chem Technol Biotechnol 90:796–820. doi: 10.1002/jctb.4634 CrossRefGoogle Scholar
  16. Ferro Orozco AM, Contreras EM, Zaritzky NE (2016) Biodegradation of bisphenol A and its metabolic intermediates by activated sludge: stoichiometry and kinetics analysis. Int Biodeter Biodegr 106:1–9. doi: 10.1016/j.ibiod.2015.10.003 CrossRefGoogle Scholar
  17. Fisli A, Saridewi R, Dewi SH, Gunlazuardi J (2013) Preparation and characterization of Fe3O4/TiO2 composites by heteroagglomeration. Adv Mat Res 626:131–137. doi: 10.4028/www.scientific.net/AMR.626.131 CrossRefGoogle Scholar
  18. Gao B, Ma Y, Cao Y, Yang W, Yao J (2006) Great enhancement of photocatalytic activity of nitrogen-doped titania by coupling with tungsten oxide. J Phys Chem B 110:14391–14397. doi: 10.1021/jp0624606 CrossRefGoogle Scholar
  19. Gaya UI, Abdullah AH (2008) Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. J Photoch Photobio C 9:1–12. doi: 10.1016/j.jphotochemrev.2007.12.003 CrossRefGoogle Scholar
  20. Gómez-Pastora J, Dominguez S, Bringas E, Rivero MJ, Ortiz I, Dionysiou DD (2016) Review and perspectives on the use of magnetic nanophotocatalysts (MNPCs) in water treatment. Chem Eng J. doi: 10.1016/j.cej.2016.04.140 Google Scholar
  21. Han C, Pelaez M, Likodimos V, Kontos AG, Falaras P, O’Shea K, Dionysiou DD (2011) Innovative visible light-activated sulfur doped TiO2 films for water treatment. Appl Catal B Environ 107(1–2):77–87. doi: 10.1016/j.apcatb.2011.06.039 CrossRefGoogle Scholar
  22. Han C, Likodimos V, Khan JA, Nadagouda MN, Andersen J, Falaras P, Rosales-Lombardi P, Dionysiou DD (2014) UV-visible light-activated Ag-decorated, monodisperse TiO2 aggregates for treatment of the pharmaceutical oxytetracycline. Environ Sci Pollut Res 21:11781–11793. doi: 10.1007/s11356-013-2233-5 CrossRefGoogle Scholar
  23. Jing J, Li J, Feng J, Li W, Yu WW (2013) Photodegradation of quinoline in water over magnetically separable Fe3O4/TiO2 composite photocatalysts. Chem Eng J 219:355–360. doi: 10.1016/j.cej.2012.12.058 CrossRefGoogle Scholar
  24. Kou Y, Yang J, Li B, Fu S (2015) Solar photocatalytic activities of porous Nb-doped TiO microspheres by coupling with tungsten oxide. Mater Res Bull 63:105–111. doi: 10.1016/j.materresbull.2014.11.050
  25. Lucas MS, Tavares PB, Peres JA, Faria JL, Rocha M, Pereira C, Freire C (2013) Photocatalytic degradation of reactive black 5 with TiO2-coated magnetic nanoparticles. Catal Today 209:116–121. doi: 10.1016/j.cattod.2012.10.024 CrossRefGoogle Scholar
  26. Maroga Mboula V, Héquet V, Andrés Y, Pastrana-Martínez LM, Doña-Rodríguez JM, Silva AMT, Falaras P (2013) Photocatalytic degradation of endocrine disruptor compounds under simulated solar light. Water Res 47:3997–4005. doi: 10.1016/j.watres.2013.01.055 CrossRefGoogle Scholar
  27. Melcer H, Klečka G (2011) Treatment of wastewaters containing bisphenol A: state of the science review. Water Environ Res 83(7):650–666. doi: 10.2175/106143010X12851009156925 CrossRefGoogle Scholar
  28. Pelaez M, De la Cruz AA, O’Shea K, Falaras P, Dionysiou DD (2011) Effects of water parameters on the degradation of microcystin-LR under visible light-activated TiO2 photocatalyst. Water Res 45:3787–3796. doi: 10.1016/j.watres.2011.04.036 CrossRefGoogle Scholar
  29. Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlop PSM, Hamilton JWJ, Byrne JA, O’Shea K, Entezari MH, Dionysiou DD (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B Environ 125:331–349. doi: 10.1016/j.apcatb.2012.05.036 CrossRefGoogle Scholar
  30. Prabhu S, Nithya A, Chandra Mohan S, KS J (2014) Surface acidity and photocatalytic activity of WO3/TiO2 nanocomposites—an overview. Mater Sci Forum 781:63–78. doi: 10.4028/www.scientific.net/MSF.781.63 CrossRefGoogle Scholar
  31. Ramos-Delgado NA, Gracia-Pinilla MA, Maya-Treviño L, Hinojosa-Reyes L, Guzman-Mar JL, Hernández-Ramírez A (2013) Solar photocatalytic activity of TiO2 modified with WO3 on the degradation of an organophosphorus pesticide. J Hazard Mater 263P:36–44. doi: 10.1016/j.jhazmat.2013.07.058 CrossRefGoogle Scholar
  32. Rashid J, Barakat MA, Ruzmanova Y, Chianese A (2015) Fe3O4/SiO2/TiO2 nanoparticles for photocatalytic degradation of 2-chlorophenol in simulated wastewater. Environ Sci Pollut Res 22:3149–3157. doi: 10.1007/s11356-014-3598-9 CrossRefGoogle Scholar
  33. Rioja N, Benguria P, Peñas FJ, Zorita S (2014) Competitive removal of pharmaceuticals from environmental waters by adsorption and photocatalytic degradation. Environ Sci Pollut Res 21:11168–11177. doi: 10.1007/s11356-014-2593-5 CrossRefGoogle Scholar
  34. Rivero MJ, Alonso E, Dominguez S, Ribao P, Ibañez R, Ortiz I, Irabien A (2014) Kinetic analysis and biodegradability of the Fenton mineralization of bisphenol A. J Chem Technol Biotechnol 89:1228–1234. doi: 10.1002/jctb.4376 CrossRefGoogle Scholar
  35. Rodríguez EM, Fernández G, Klamerth N, Maldonado MI, Álvarez PM, Malato S (2010) Efficiency of different solar advanced oxidation processes on the oxidation of bisphenol A in water. Appl Catal B Environ 95:228–237. doi: 10.1016/j.apcatb.2009.12.027 CrossRefGoogle Scholar
  36. Saiz J, Bringas E, Ortiz I (2013) Functionalized magnetic nanoparticles as new adsorption materials for arsenic removal from polluted waters. J Chem Technol Biotechnol 89:909–918. doi: 10.1002/jctb.4331 CrossRefGoogle Scholar
  37. Seachrist DD, Bonk KW, Ho SM, Prins G, Sotod AM, Keria RA (2016) A review of the carcinogenic potential of bisphenol A. Reprod Toxicol 59:167–182. doi: 10.1016/j.reprotox.2015.09.006 CrossRefGoogle Scholar
  38. Shan G, Yan S, Tyagi RD, Surampalli RY, Zhang TC (2009) Applications of nanomaterials in environmental science and engineering: a review. Pract Period Hazard Toxic Radioact Waste Manage 13:110–119. doi: 10.1061/(ASCE)1090-025X(2009)13:2(110) CrossRefGoogle Scholar
  39. Sharma J, Mishra IM, Kumar V (2016) Mechanistic study of photo-oxidation of Bisphenol-a (BPA) with hydrogen peroxide (H2O2) and sodium persulfate (SPS. J Environ Manag 166:12–22. doi: 10.1016/j.jenvman.2015.09.043 CrossRefGoogle Scholar
  40. Sin JC, Lam SM, Mohamed AR, Lee KT (2012) Degrading endocrine disrupting chemicals from wastewater by TiO2 photocatalysis: a review. Int J Photoenergy 185159. doi: 10.1155/2012/185159
  41. Thiruvenkatachari R, Kwon TO, Moon IS (2005) Application of slurry type photocatalytic oxidation-submerged hollow fiber microfiltration hybrid system for the degradation of bisphenol A (BPA). Separ Sci and Technol 40:2871–2888. doi: 10.1080/01496390500333160 CrossRefGoogle Scholar
  42. Tsai WT, Lee MK, TY S, Chang YM (2009) Photodegradation of bisphenol-A in a batch TiO2 suspension reactor. J Hazard Mater 168:269–275. doi: 10.1016/j.jhazmat.2009.02.034 CrossRefGoogle Scholar
  43. Watanabe N, Horikoshi S, Kawabe H, Sugie Y, Zhao J, Hidaka H (2003) Photodegradation mechanism for bisphenol A at the TiO2/H2O interfaces. Chemosphere 52:851–859. doi: 10.1016/S0045-6535(02)00837-8 CrossRefGoogle Scholar
  44. Ye M, Zhang Q, Hu Y, Ge J, Lu Z, He L, Chen Z, Yin Y (2010) Magnetically recoverable core–shell nanocomposites with enhanced photocatalytic activity. Chem Eur J 16:6243–6250. doi: 10.1002/chem.200903516 CrossRefGoogle Scholar
  45. Zhang YC, Li J, HY X (2012) One-step in situ solvothermal synthesis of SnS2/TiO2 nanocomposites with high performance in visible light-driven photocatalytic reduction of aqueous Cr(VI). Appl Catal B: Environ 123–124:18–26. doi: 10.1016/j.apcatb.2012.04.018 CrossRefGoogle Scholar
  46. Zhang YC, Yang M, Zhang G, Dionysiou DD (2013) HNO3-involved one-step low temperature solvothermal synthesis of N-doped TiO2 nanocrystals for efficient photocatalytic reduction of Cr(VI) in water. Appl Catal B: Environ 142–143:249–258. doi: 10.1016/j.apcatb.2013.05.023 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • S. Dominguez
    • 1
  • M. Huebra
    • 2
  • C. Han
    • 3
  • P. Campo
    • 4
  • M.N. Nadagouda
    • 5
  • M.J. Rivero
    • 1
  • I. Ortiz
    • 1
  • D. D. Dionysiou
    • 3
  1. 1.Department of Chemical and Biomolecular EngineeringUniversity of CantabriaSantanderSpain
  2. 2.Dpto Química AnalíticaUniversidad País VascoBilbaoSpain
  3. 3.Environmental Engineering and Science ProgramUniversity of CincinnatiCincinnatiUSA
  4. 4.Cranfield Water Science InstituteCranfield UniversityCranfieldUK
  5. 5.Department of Mechanical and Materials EngineeringWright State UniversityDaytonUSA

Personalised recommendations