Advertisement

Environmental Science and Pollution Research

, Volume 25, Issue 24, pp 23515–23528 | Cite as

Long trend reduction of phosphorus wastewater loading in the Seine: determination of phosphorus speciation and sorption for modeling algal growth

  • Najla Aissa-GrouzEmail author
  • Josette Garnier
  • Gilles Billen
Spatial and temporal patterns of anthropogenic influence in a large river basin. A multidisciplinary approach

Abstract

The lower Seine River is severely affected by the release of the treated wastewater from the 12 million inhabitants of the Paris agglomeration. Whereas urban effluents were the major source of phosphorus pollution in the late 1980s, the ban on polyphosphates from detergents in 1991 considerably reduced the phosphorus (P) loading to the Seine River and was followed in 2000 by the implementation of phosphorus treatment in the largest wastewater treatment plant of Paris conurbation (Seine Aval). Phosphorus discharged to the rivers from domestic wastewater was reduced by 80 %, significantly decreasing phytoplankton biomass in the large branches of the Seine River. Considering that phosphorus treatment (the use of ferric salts in the P treatment line) might change the adsorption of ortho-phosphates on suspended matter, we experimentally studied again their sorption processes in these new conditions. We found parameters of the Langmuir equation (Pac = 0.003 mgP mgSS−1; Kps = 0.04 mgP L−1) that significantly differed from the values previously considered for modeling of the whole Seine, especially for Kps (Pac = 0.0055 mgP mgSS−1; Kps = 0.7 mgP L−1). Using the Seneque-Rivertrahler modeling approach, we showed a better agreement between P observations and simulations with the new P sorption parameters, with slight effect on the simulation of the development of phytoplankton in the water column.

Keywords

Phosphorus Domestic effluents P sorption Water quality Phytoplankton Modeling 

Notes

Acknowledgments

This study was undertaken within the framework of the R2DS Ile-de-France and the PIREN-Seine research program. The authors are part of the Ile-de-France Federation for Research on the Environment (FIRE FR3020 CNRS & UPMC). We are grateful to the SIAAP (Syndicat Interdépartemental pour l’Assainissement de l’Agglomération Parisienne) and to AESN (Agence de l’Eau Seine Normandie) for the samples and data they supplied. Thanks are due to Benjamin Mercier and Anun Martinez for their help on the field and/or in the laboratory.

References

  1. Aissa-Grouz N, Garnier J, Billen G, Mercier B, Martinez A (2015) The response of river nitrification to changes in wastewater treatment (The case of the lower Seine River downstream from Paris). In: Annales de Limnologie-International Journal of Limnology, EDP Sciences, Vol. 51, No. 4, pp. 351–364Google Scholar
  2. AFNOR (1994) Qualité de l’eau - Dosage des orthophosphates, des polyphosphates et du phosphore total (Méthode spectrophotométrique)Google Scholar
  3. AFNOR (2005) NFT90-023 Qualité de l’eau - Dosage du phosphore- Méthode spectrométrique au molybdate d’ammoniumGoogle Scholar
  4. Alexander RB, Smith RA (2006) Trends in the nutrient enrichment of U. S. rivers during the late 20 th century and their relation to changes in probable stream trophic conditions. Limnol Oceanogr 51:639–654CrossRefGoogle Scholar
  5. Billen G, Garnier J (1997) The Phison River plume: coastal eutrophication in response to changes in land use and water management in the watershed. Aquat Microb Ecol 13:3–17CrossRefGoogle Scholar
  6. Billen G, Garnier J, Hanset P (1994) Modelling phytoplankton development in whole drainage networks: the RIVERSTRAHLER Model applied to the Seine river system. Phytoplankton in Turbid Environments: Rivers and Shallow Lakes. Springer Netherlands 119–137Google Scholar
  7. Billen G, Garnier J, Némery J, Sebilo M, Sferratore A, Barles S, Benoit P, Benoit M (2007) A long-term view of nutrient transfers through the Seine river continuum. Sci Total Environ 375:80–97CrossRefGoogle Scholar
  8. Boström B, Andersen J M, Fleischer S, and Jansson M (1988) Exchange of phosphorus across the sediment-water interface. In Phosphorus in Freshwater Ecosystems, Springer, 229–244Google Scholar
  9. Bowes MJ, Smith JT, Neal C, Leach DV, Scarlett PM, Wickham HD, Harman SA, Armstrong LK, Davy-Bowker J, Haft M, Davies CE (2011) Changes in water quality of the River Frome (UK) from 1965 to 2009: is phosphorus mitigation finally working? Sci Total Environ 409:3418–3430CrossRefGoogle Scholar
  10. Chuai X, Ding W, Chen X, Wang X, Miao A, Xi B, He L, Yang L (2011) Phosphorus release from cyanobacterial blooms in Meiliang Bay of Lake Taihu, China. Ecol Eng 37:842–849CrossRefGoogle Scholar
  11. Dubus I (1997) Etude au laboratoire de la rétention du phosphore dans les sols ferrallitiques allitiques de l’île de Maré. Sciences de la Vie.Agropédologie.Conventions. ORSTOM. Centre IRD de Bondy, NouméaGoogle Scholar
  12. Eberlein K, Kattner G (1987) Automatic method for the determination of ortho-phosphate and total dissolved phosphorus in the marine environment. Fresenius' Z Anal Chem 326:354–357CrossRefGoogle Scholar
  13. Elser JJ, Marzolf E, Goldman C (1990) Phosphorus and nitrogen limitation of phytoplankton growth in the freshwaters of North America: a review and critique of experimental enrichments. anadian Journal of fisheries and aquatic sciences 47:1468–1477CrossRefGoogle Scholar
  14. Escoffier N, Bernard C, Hamlaoui S, Groleau A, Catherine A (2015) Quantifying phytoplankton communities using spectral fluorescence: the effects of species composition and physiological state. J Plankton Res 37(1):233–247CrossRefGoogle Scholar
  15. EU-WFD (Water Framework Directive) (2000) OJ L 327/1, 22.12, pp. 1–72Google Scholar
  16. Flower H, Rains M, Lewis D, Zhang J-Z, Price R (2016) Control of phosphorus concentration through adsorption and desorption processes in shallow groundwater of subtropical carbonate estuary. Estuar Coast Shelf Sci 169:238–247CrossRefGoogle Scholar
  17. Froelich PN (1988) Kinetic control of dissolved phosphate in natural rivers and estuaries: a primer on the phosphate buffer mechanism1. Limnol Oceanogr 33:649–668Google Scholar
  18. Gale PM, Reddy KR (1994) Carbon flux between sediment and water column of a shallow, subtropical, hypereutrophic lake. J Environ Qual 23:965–972CrossRefGoogle Scholar
  19. Garnier J, Billen G, Coste M (1995) Seasonal succession of diatoms and Chlorophyceae in the drainage network of the Seine River: observation and modeling. Limnol Oceanogr 40:750–765Google Scholar
  20. Garnier J, Servais P, Billen G, Akopian M, Brion N (2001) The oxygen budget in the Seine estuary: balance between photosynthesis and degradation of organic matter. Estuaries 24:964–977CrossRefGoogle Scholar
  21. Garnier J, Billen G, Hannon E, Fonbonne S, Videnina Y, Soulie M (2002) Modelling the transfer and retention of nutrients in the drainage network of the Danube river. Estuar Coast Shelf Sci 54:285–308CrossRefGoogle Scholar
  22. Garnier J, Némery J, Billen G, Théry S (2005) Nutrient dynamics and control of eutrophication in the Marne River system: modelling the role of exchangeable phosphorus. J Hydrol 304:397–412CrossRefGoogle Scholar
  23. Garnier J, Billen G, Even S, Etcheber H, Servais P (2008) Organic matter dynamics and budgets in the turbidity maximum zone of the Seine Estuary (France). Estuar Coast Shelf Sci 77:150–162CrossRefGoogle Scholar
  24. Garnier J, Passy P, Thieu V, Callens J, Silvestre M, Billen G (2013) Fate of nutrients in the aquatic continuum of the Seine River and its estuary: modeling the impacts of human activity changes in the watershed. In Biogeochemical Dynamics in Major River-Coastal Interfaces. Linkages with Global Change, Cambridge University Press, 530–553Google Scholar
  25. Gelbrecht J, Lengsfeld H, Pöthig R, Opitz D (2005) Temporal and spatial variation of phosphorus input, retention and loss in a small catchment of NE Germany. J Hydrol 304(1):151–165CrossRefGoogle Scholar
  26. Heckrath G, Brookes PC, Poulton PR, Goulding KWT (1995) Phosphorus leaching from soils containing different phosphorus concentrations in the Broadbalk experiment. J Environ Qual 24:904–910CrossRefGoogle Scholar
  27. Houser JN, Richardson WB (2010) Nitrogen and phosphorus in the Upper Mississippi River: transport, processing, and effects on the river ecosystem. Hydrobiologia 640:71–88. doi: 10.1007/s10750-009-0067-4 CrossRefGoogle Scholar
  28. Hu J, Shen Q, Liu Y, and Liu J ( 2007) Mobility of different phosphorus pools in the sediment of Lake Dianchi during cyanobacterial blooms. Environ Monit Assess 132:141–153Google Scholar
  29. Huang XL, Zhang JZ (2009) Neutral persulfate digestion at sub-boiling temperature in an oven for total dissolved phosphorus determination in natural waters. Talanta 78:1129–1135CrossRefGoogle Scholar
  30. Huang XL, Zhang JZ (2010) Spatial variation in sediment-water exchange of phosphorus in Florida Bay: AMP as a model organic compound. Environ Sci Technol 44:7790–7795CrossRefGoogle Scholar
  31. Ibáñez C, Alcaraz C, Caiola N, Rovira A, Trobajo R, Alonso M, Duran C, Jiménez PJ, et al. (2012) Regime shift from phytoplankton to macrophyte dominance in a large river: top-down versus bottom-up effects. Sci Total Environ 416:314–322CrossRefGoogle Scholar
  32. Jin X, He Y, Kirumba G, Hassan Y, Li J (2013) Phosphorus fractions and phosphate sorption-release characteristics of the sediment in the Yangtze River estuary reservoir. Ecol Eng 55:62–66CrossRefGoogle Scholar
  33. Kronvang B, Jeppesen E, Conley JD, Søndergaard M, Larsen SE, Ovesen NB, Carstensen J (2005) Nutrient pressures and ecological responses to nutrient loading reductions in Danish streams, lakes and coastal waters. J Hydrol 304:274–288CrossRefGoogle Scholar
  34. Kwadrans J, Bucka H, Zurek R (1994) On the primary production and ecological characteristics of phytobenthos and phytoplankton in the littoral of the Goczaêkowice Reservoir (outhern Poland). Acta Hydrobiologica 36:335–355Google Scholar
  35. Lai DYF, Lam KC (2008) Phosphorus retention and release by sediments in the eutrophic Mai Po Marshes, Hong Kong. Mar Pollut Bull 57:349–356CrossRefGoogle Scholar
  36. Lancelot C, Gypens N, Billen G, Garnier J, Roubeix V (2007) Testing an integrated river–ocean mathematical tool for linking marine eutrophication to land use: the Phaeocystis-dominated Belgian coastal zone (Southern North Sea) over the past 50 years. J Mar Syst 64:216–228CrossRefGoogle Scholar
  37. Lancelot C, Thieu V, Polard A, Garnier J, Billen G, Hecq W, Gypens N (2011) Ecological and economic effectiveness of nutrient reduction policies on coastal Phaeocystis colony blooms in the Southern North Sea: an integrated modeling approach. Sci Total Environ 409:2179–2191CrossRefGoogle Scholar
  38. Li M, Whelan MJ, Wang GQ, White SM (2013) Phosphorus sorption and buffering mechanisms in suspended sediments from the Yangtze Estuary and Hangzhou Bay, China. Biogeosciences 10:3341–3348CrossRefGoogle Scholar
  39. Meng J, Yao Q, Yu Z (2014) Particulate phosphorus speciation and phosphate adsorption characteristics associated with sediment grain size. Ecol Eng 70:140–145CrossRefGoogle Scholar
  40. Millero FJ, Huang F, Zhu X, Liu X, Zhang J-Z (2001) Adsorption and desorption of phosphate on the calcite and aragonite in seawater. Aquat Geochem 7(1):33–56CrossRefGoogle Scholar
  41. Moazed H, Hoseini Y, Naseri AA, Abbasi F (2010) Determining phosphorus adsorption isotherm in soil and its relation to soil characteristics. Journal of Food, Agriculture & Environment 8:1153–1157Google Scholar
  42. Mortimer CH (1942) The exchange of dissolved substances between mud and water in lakes. The. J Ecol:147–201Google Scholar
  43. Némery J, Garnier J (2007) Origin and fate of phosphorus in the Seine watershed (France): agricultural and hydrographic P budgets. Journal of Geophysical Research-Biogeosciences 112:G03012. doi: 10.1029/2006JG000331 CrossRefGoogle Scholar
  44. Oenema O, Roest CWJ (1998) Nitrogen and phosphorus losses from agriculture into surface waters; the effect of policies and measures in the Netherlands. Water Sci Technol 37:19–30CrossRefGoogle Scholar
  45. Official Journal of the European Union Regulation (2012) Official Journal of the European Union Regulation (EU) No 259/2012 the European parliament and the council of 14 March 2012, amending Regulation (EC) No 648/2004 as regards the use of phosphates and other phosphorus compounds in consumer laundry detergents and consumer automatic dishwasher detergents. [Available at http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32012R0259 (last accessed 24 February 2016)
  46. Pant HK, Reddy KR (2001) Phosphorus sorption characteristics of estuarine sediments under different redox conditions. J Environ Qual 30:1474–1480CrossRefGoogle Scholar
  47. Passy P, Gypens N, Billen G, Garnier J, Thieu V, Rousseau V, Callens J, Parent JY, et al. (2013) A model reconstruction of riverine nutrient fluxes and eutrophication in the Belgian Coastal Zone since 1984. J Mar Syst 128:106–122CrossRefGoogle Scholar
  48. Passy P, Le Gendre R, Garnier J, Cugier P, Callens J, Paris F, Billen G, Riou P, Romero E (2016) Eutrophication modelling chain for improved management strategies to prevent algal blooms in the Seine Bight. Mar Ecol Prog Ser. doi: 10.3354/meps11533 CrossRefGoogle Scholar
  49. Redfield AC (1958) The biological control of chemical factors in the environment. Am Sci:230A–2221Google Scholar
  50. Rodier J(1984) L’analyse de l’eau. 7e édition. DUNODGoogle Scholar
  51. Romero E, Garnier J, Lassaletta L, Billen G, Le Gendre R, Riou P, Cugier P (2013) Large-scale patterns of river inputs in southwestern Europe: seasonal and interannual variations and potential eutrophication effects at the coastal zone. Biogeochemistry 113(1–3):481–505CrossRefGoogle Scholar
  52. Romero E, Le Gendre R, Garnier J, Billen G, Fisson C, Silvestre M, Riou P (2016) Long-term water quality in the lower Seine: lessons learned over 4 decades of monitoring. Environ Sci Pol 58:141–154CrossRefGoogle Scholar
  53. Sand-Jensen K, Borum J (1991) Interactions among phytoplankton, periphyton, and macrophytes in temperate freshwaters and estuaries. Aquat Bot 41:137–175CrossRefGoogle Scholar
  54. Schindler DW (1977) Evolution of phosphorus limitation in lakes. Science 195:260–262CrossRefGoogle Scholar
  55. Schoumans OF, Chardon WJ, Bechmann ME, Gascuel-Odoux C, Hofman G, Kronvang B, Rubaek GH, Ulén B, Dorioz JM (2014) Mitigation options to reduce phosphorus losses from the agricultural sector and improve surface water quality: a review. Sci Total Environ 468:1255–1266CrossRefGoogle Scholar
  56. Stalnacke P, Grimvall A, Libiseller C, Laznik M, Kokorite I (2003) Trends in nutrient concentrations in Latvian rivers and the response to the dramatic change in agriculture. J Hydrol 283:184–205CrossRefGoogle Scholar
  57. Tsado PA, Osunde OA, Igwe CA, Adeboye MKA, Lawal BA (2012) Phosphorus sorption characteristics of some selected soil of the Nigerian Guinea Savanna. International Journal of Agri Science 2:613–618Google Scholar
  58. Turner RE, Rabalais NN (1994) Coastal eutrophication near the Mississippi river delta. Nature 368:619–621CrossRefGoogle Scholar
  59. UWWTD (Urban wastewater treatment Directive) (1991) 91/271/CEE du Conseil, du 21mai 1991, relative au traitement des eaux urbaines résiduaires. JO L 135 du 30.5.1991, pp. 40–52Google Scholar
  60. Van der Zee SE, Van Riemsddijk WH (1988) Model for long-term phosphate reaction kinetics in soil. J Environ Qual 17:35–41Google Scholar
  61. Wang S, Jin X, Pang Y, Zhao H, Zhou X, Wu F (2005) Phosphorus fractions and phosphate sorption characteristics in relation to the sediment compositions of shallow lakes in the middle and lower reaches of Yangtze River region, China. J Colloid Interface Sci 289:339–346CrossRefGoogle Scholar
  62. Zevenboom W, Bij de Vaate A, Mur LR (1982) Assessment of factors limiting growth rate of Oscillatoria agardhii in hypertrophic Lake Wolderwijd, 1978, by use of physiological indicators1. Limnol Oceanogr 27:39–52CrossRefGoogle Scholar
  63. Zhang J-Z (2012) Current wet persulfate digestion method considerably underestimates total phosphorus content in natural waters. Environmental Science & Technology 46:13033–13034. doi: 10.1021/es304373f CrossRefGoogle Scholar
  64. Zhang J-Z, Huang X-L (2007) Relative importance of solid-phase phosphorus and iron on the sorption behavior of sediments. Environmental science & technology 41:2789–2795CrossRefGoogle Scholar
  65. Zhang J-Z, Huang X-L (2011) Effect of temperature and salinity on phosphate sorption on marine sediments. Environmental Science & Technology 45:6831–6837. doi: 10.1021/es200867p CrossRefGoogle Scholar
  66. Zhang J-Z, Fischer CJ, Ortner PB (2004) Potential availability of sedimentary phosphorus to sediment resuspension in Florida Bay. Glob Biogeochem Cycles 18:GB4008. doi: 10.1029/2004GB002255 CrossRefGoogle Scholar
  67. Zhang B, Fang F, Guo J, Chen Y, Li Z, Guo S (2012) Phosphorus fractions and phosphate sorption-release characteristics relevant to the soil composition of water-level-fluctuating zone of Three Gorges Reservoir. Ecol Eng 40:153–159CrossRefGoogle Scholar
  68. Zhou A, Tang H, Wang D (2005) Phosphorus adsorption on natural sediments: modeling and effects of pH and sediment composition. Water Res 39:1245–1254. doi: 10.1016/j.watres.2005.01.026 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Najla Aissa-Grouz
    • 1
    Email author
  • Josette Garnier
    • 1
    • 2
  • Gilles Billen
    • 1
    • 2
  1. 1.University of Pierre and Marie CurieParisFrance
  2. 2.National Center of Scientific ResearchParisFrance

Personalised recommendations