Advertisement

Environmental Science and Pollution Research

, Volume 23, Issue 23, pp 24393–24401 | Cite as

Wastewater sludges pretreated by different oxidation systems at mild conditions to promote the biogas formation in anaerobic processes

  • Y. Segura
  • D. Puyol
  • L. Ballesteros
  • F. Martínez
  • J.A. Melero
Research Article

Abstract

The effect of different oxidation processes at mild conditions including the coupled-Fenton (sono-Fenton, photo-Fenton, and sono-photo-Fenton) and their blank systems (ultrasound, ultraviolet, zero valent iron, and Fenton) on anaerobic digestion of the sludge for biogas production was investigated. Ultrasounds led to the highest organic matter solubilization (3.8 up to 5.2 g chemical oxygen demand (COD)/L, for the raw and treated sludge, respectively), while for the rest, organic matter transformation was observed resulting in an almost soluble COD net balance. Results indicated that for the most oxidative processes, the released organic matter was probably mineralized by the hydroxyl radicals produced during the treatments. It is interesting to remark that even if the biochemical methane potential was barely enhanced by the different methods applied, all the methods demonstrated to enhance the overall kinetics of the biomethanation processes, increasing the rapidly biodegradable fraction of the sludge.

Keywords

Advanced oxidation processes Wastewater sludges Biogas formation 

Notes

Acknowledgments

Financial supports of the Regional Government of Madrid provided through project S2013/MAE-2716-REMTAVARES-CM cofinanced with structural funding of the European Community are acknowledged. DP acknowledges the Spanish MEC for the funding through a postdoctoral fellowship. This work has also been financed through the project funded by Spanish Ministry of Economy and Competitiveness (MINECO), in the frame of the collaborative international consortium WATERJPI2013—MOTREM of the Water Challenges for a Changing World Joint Programming Initiative (Water JPI) Pilot Call.

References

  1. Angelidaki, I., Alves M., Bolzonella, D., Borzacconi, L., Campos, J., Guwy, A. Kalyuzhnyi, S. Jenicek, P. Van Lier, J. (2009) Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assaysGoogle Scholar
  2. APHA, AWWA, WEF (2005) Standard methods for the examination of water and wastewater, APHA PublicationGoogle Scholar
  3. Appels L, Baeyens J, Degrève J, Dewil R (2008) Principles and potential of the anaerobic digestion of waste-activated sludge. Prog Energy Combust Sci 34:755–781. doi: 10.1016/j.pecs.2008.06.002 CrossRefGoogle Scholar
  4. Batstone DJ, Keller J, Angelidaki I, Kalyuzhnyi S, Pavlostathis S, Rozzi A, Sanders W, Siegrist H, Vavilin V (2002) The IWA anaerobic digestion model no 1(ADM 1). Water Sci Technol 45:65–73Google Scholar
  5. Batstone DJ, Pind PF, Angelidaki I (2003) Kinetics of thermophilic, anaerobic oxidation of straight and branched chain butyrate and valerate. Biotechnol Bioeng 84:195–204. doi: 10.1002/bit.10753 CrossRefGoogle Scholar
  6. Batstone DJ, Tait S, Starrenburg D (2009) Estimation of hydrolysis parameters in full scale anaerobic digesters. Biotechnol Bioeng 102:1513–1520. doi: 10.1002/bit.22163 CrossRefGoogle Scholar
  7. Bougrier C, Albasi C, Delgenès JP, Carrère H (2006) Effect of ultrasonic, thermal and ozone pre-treatments on waste activated sludge solubilisation and anaerobic biodegradability. Chem Eng Process Process Intensif 45:711–718. doi: 10.1016/j.cep.2006.02.005 CrossRefGoogle Scholar
  8. Carrère H, Dumas C, Battimelli A, Batstone DJ, Delgenès JP, Steyer JP, Ferrer I (2010) Pretreatment methods to improve sludge anaerobic degradability: a review. J Hazard Mater 183:1–15. doi: 10.1016/j.jhazmat.2010.06.129 CrossRefGoogle Scholar
  9. Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99(10):4044–4064. doi: 10.1016/j.biortech.2007.01.057 CrossRefGoogle Scholar
  10. Chu L, Yan S, Xing XH, et al. (2009) Progress and perspectives of sludge ozonation as a powerful pretreatment method for minimization of excess sludge production. Water Res 43:1811–1822. doi: 10.1016/j.watres.2009.02.012 CrossRefGoogle Scholar
  11. Cieślik BM, Namieśnik J, Konieczka P (2015) Review of sewage sludge management: standards, regulations and analytical methods. J Clean Prod 90:1–15. doi: 10.1016/j.jclepro.2014.11.031 CrossRefGoogle Scholar
  12. Eastman JA, Ferguson JF (1981) Solubilization of particulate organic carbon during the acid phase of anaerobic digestion. J Water Pollut Control Fed:352–366Google Scholar
  13. Feng Y, Zhang Y, Quan X, Chen S (2014) Enhanced anaerobic digestion of waste activated sludge digestion by the addition of zero valent iron. Water Res 52:242–250. doi: 10.1016/j.watres.2013.10.072 CrossRefGoogle Scholar
  14. Gonze E, Fourel L, Gonthier Y, et al. (1999) Wastewater pretreatment with ultrasonic irradiation to reduce toxicity. Chem Eng J 73:93–100. doi: 10.1016/S1385-8947(99)00021-2 CrossRefGoogle Scholar
  15. Gunaseelan VN (1997) Anaerobic digestion of biomass for methane production: a review. Biomass Bioenergy 13(1):83–114. doi: 10.1016/S0961-9534(97)00020-2 CrossRefGoogle Scholar
  16. Harris P, McCabe B (2015) Review of pre-treatments used in anaerobic digestion and their potential application in high-fat cattle slaughterhouse wastewater. Appl Energy 155:560–575. doi: 10.1016/j.apenergy.2015.06.026 CrossRefGoogle Scholar
  17. Imbierowicz M, Chacuk A (2012) Kinetic model of excess activated sludge thermohydrolysis. Water Res 46:5747–5755. doi: 10.1016/j.watres.2012.07.051 CrossRefGoogle Scholar
  18. IWA (2002) Anaerobic digestion model no. 1 (ADM1), IWAGoogle Scholar
  19. Jain S, Jain S, Wolf IT, Lee J, Tong YW (2015) A comprehensive review on operating parameters and different pretreatment methodologies for anaerobic digestion of municipal solid waste. Renew Sust Energ Rev 52:142–154CrossRefGoogle Scholar
  20. Jiang Z, Lv L, Zhang W, et al. (2011) Nitrate reduction using nanosized zero-valent iron supported by polystyrene resins: role of surface functional groups. Water Res 45:2191–2198. doi: 10.1016/j.watres.2011.01.005 CrossRefGoogle Scholar
  21. Kavitha V, Palanivelu K (2004) The role of ferrous ion in Fenton and photo-Fenton processes for the degradation of phenol. Chemosphere 55:1235–1243. doi: 10.1016/j.chemosphere.2003.12.022 CrossRefGoogle Scholar
  22. Martin M, González I, Serrano A, Siles JA (2015) Evaluation of the improvement of sonication pre-treatment in the anaerobic digestion of sewage sludge. J Environ Manag 147:330–337CrossRefGoogle Scholar
  23. Martın, M. A., Raposo, F., Borja, R., & Martın, A. (2002). Kinetic study of the anaerobic digestion of vinasse pretreated with ozone, ozone plus ultraviolet light, and ozone plus ultraviolet light in the presence of titanium dioxide. Process Biochemistry, 37(7), 699–706.Google Scholar
  24. Nah IW, Kang YW, Hwang K, Song W (2000) Mechanical pretreatment of waste activated sludge for anaerobic digestion process. Water Res 34:2362–2368. doi: 10.1016/S0043-1354(99)00361-9
  25. Neyens E, Baeyens J (2003) A review of thermal sludge pre-treatment processes to improve dewaterability. J Hazard Mater 98(1):51–67. doi: 10.1016/S0304-3894(02)00320-5 CrossRefGoogle Scholar
  26. Pavlostathis SG, Giraldo-Gomez E (1991) Kinetics of anaerobic treatment: a critical review. Water Sci Technol 24:35–59Google Scholar
  27. Pham TTH, Brar SK, Tyagi RD, Surampalli RY (2010) Optimization of Fenton oxidation pre-treatment for B. Thuringiensis-based production of value added products from wastewater sludge. J Environ Manag 91(8):1657–1664CrossRefGoogle Scholar
  28. Pilli S, Bhunia P, Yan S, et al. (2011) Ultrasonic pretreatment of sludge: a review. Ultrason Sonochem 18:1–18. doi: 10.1016/j.ultsonch.2010.02.014 CrossRefGoogle Scholar
  29. Puyol D, Mohedano AF, Rodriguez JJ, Sanz JL (2011) Effect of 2, 4, 6-trichlorophenol on the microbial activity of adapted anaerobic granular sludge bioaugmented with desulfitobacterium strains. New Biotechnol 29(1):79–89. doi: 10.1016/j.nbt.2011.06.011 CrossRefGoogle Scholar
  30. Rufino B, Campo R, Genon G, Lorenzi E, Novarino D, Scibilia G, Zanetti M (2015) Improvement of anaerobic digestion of sewage sludge in a wastewater treatment plant by means of mechanical and thermal pre-treatments: performance, energy and economical assessment. Bioresour Technol 175:298–308. doi: 10.1016/j.biortech.2014.10.071 CrossRefGoogle Scholar
  31. Tiehm A, Nickel K, Zellhorn M, Neis U (2001) Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization. Water Res 35:2003–2009. doi: 10.1016/S0043-1354(00)00468-1 CrossRefGoogle Scholar
  32. Tokumura M, Sekine M, Yoshinari M, Hussein T, Kawase Y (2007) Photo-Fenton process for excess sludge disintegration. Process Biochem 42:627–633CrossRefGoogle Scholar
  33. Tyagi VK, Lo S (2011) Application of physico-chemical pretreatment methods to enhance the sludge disintegration and subsequent anaerobic digestion: an up to date review. Rev Environ Sci Biotechnol 10:215–242CrossRefGoogle Scholar
  34. Tyagi VK, Lo S (2013) Sludge: a waste or renewable source for energy and resources recovery? Renew Sust Energ Rev 25:708–728CrossRefGoogle Scholar
  35. Tyagi VK, Lo S, Rajpal A (2014) Chemically coupled microwave and ultrasonic pre-hydrolysis of pulp and paper mill waste-activated sludge: effect on sludge solubilisation and anaerobic digestion. Environ Sci Pollut Res 21:6205–6217CrossRefGoogle Scholar
  36. Wang Q, Ye L, Jiang G, Jensen PD, Batstone DJ, Yuan Z (2013) Free nitrous acid (FNA)-based pretreatment enhances methane production from waste activated sludge. Environ Sci Technol 47(20):11897–11904CrossRefGoogle Scholar
  37. Xiao X, Sheng G, Mu Y, Yu H (2013) A modeling approach to describe ZVI-based anaerobic system. Water Res 47:6007–6013. doi: 10.1016/j.watres.2013.07.025 CrossRefGoogle Scholar
  38. Zhen G, Lu X, Wang B, Zhao Y, Chai X, Niu D, Zhao T (2014) Enhanced dewatering characteristics of waste activated sludge with Fenton pretreatment: effectiveness and statistical optimization. Front Environ Sci Eng 8(2):267–276CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Y. Segura
    • 1
  • D. Puyol
    • 1
  • L. Ballesteros
    • 1
  • F. Martínez
    • 1
  • J.A. Melero
    • 1
  1. 1.Department of Chemical and Energy Tech., Chemical and Environmental Tech., Mechanical Tech. and Analytical Chemistry ESCETRey Juan Carlos UniversityMadridSpain

Personalised recommendations