Environmental Science and Pollution Research

, Volume 25, Issue 24, pp 23529–23558 | Cite as

Evaluation of a spatialized agronomic model in predicting yield and N leaching at the scale of the Seine-Normandie Basin

  • N. BeaudoinEmail author
  • N. Gallois
  • P. Viennot
  • C. Le Bas
  • T. Puech
  • C. Schott
  • S. Buis
  • B. Mary
Spatial and temporal patterns of anthropogenic influence in a large river basin. A multidisciplinary approach


The EU directive has addressed ambitious targets concerning the quality of water bodies. Predicting water quality as affected by land use and management requires using dynamic agro-hydrogeological models. In this study, an agronomic model (STICS) and a hydrogeological model (MODCOU) have been associated in order to simulate nitrogen fluxes in the Seine-Normandie Basin, which is affected by nitrate pollution of groundwater due to intensive farming systems. This modeling platform was used to predict and understand the spatial and temporal evolution of water quality over the 1971–2013 period. A quality assurance protocol (Refsgaard et al. Environ Model Softw 20: 1201–1215, 2005) was used to qualify the reliability of STICS outputs. Four iterative runs of the model were carried out with improved parameterization of soils and crop management without any change in the model. Improving model inputs changed much more the spatial distribution of simulated N losses than their mean values. STICS slightly underestimated the crop yields compared to the observed values at the administrative district scale. The platform also slightly underestimated the nitrate concentration at the outlet level with a mean difference ranging from −1.4 to −9.2 mg NO3 L−1 according to the aquifer during the last decade. This outcome should help the stakeholders in decision-making to prevent nitrate pollution and provide new specifications for STICS development.


STICS MODCOU Cropping system Nitrate pollution Water drainage Nitrogen leaching Quality assurance 



This project received funding from the Seine-Normandie Water Agency (AESN) and the PIREN-Seine program. We thank also the anonymous reviewers for their helpful comments.


  1. AFES (1995) Le référentiel pédologique. INRA Editions, 329 pGoogle Scholar
  2. AGRESTE (2007) La statistique agricole annuelle: présentation générale.
  3. Agreste (2010) Le recensement agricole 2010. Ministère de l’Agriculture, de l’agroalimentaire et de la forêt, FranceGoogle Scholar
  4. Almasri MN (2007) Nitrate contamination of groundwater: a conceptual management framework. Environ Impact Assess Rev 27:220–242CrossRefGoogle Scholar
  5. Anglade J, Billen J, Garnier J (2015) « La Terre » de Zola, une histoire biogéochimique de la Beauce au XIXe siècle. VertigO doi: 10.4000/vertigo.16438Google Scholar
  6. Angulo C, Gaiser T, Rötter RP, Børgesen CD, Hlavinka P, Trnka M, Ewert F (2014) Fingerprints’ of four crop models as affected by soil input data aggregation. Eur J Agron 61:35–48CrossRefGoogle Scholar
  7. Arrouays D, Saby N, Thioulouze J, et al. (2011) Large trends in French topsoil characteristics are revealed by spatially constrained multivariate analysis. Geoderma 161:107–114CrossRefGoogle Scholar
  8. Asseng S, Ewert F, Rosenzweig C, et al. (2013) Uncertainty in simulating wheat yields under climate change. Nat Clim Chang 3:827–832CrossRefGoogle Scholar
  9. Barroin G, Dorioz JM, Durand P, Mérot P (1997) Entrainement de l’azote dans les eaux de surface et consequences sur les écosystèmes. In: Lemaire G, Nicolardot N, Eds. Maîtrise de l’azote dans les agrosystèmes, INRA Editions, 39–54Google Scholar
  10. Beaudoin N (2006) Caractérisation expérimentale et modélisation des effets des pratiques culturales sur la pollution nitrique d’un aquifère en zone de grande culture. Ph D thesis, INA-PG, Paris, 177 ppGoogle Scholar
  11. Beaudoin N, Saad J, Van Laethem C, et al. (2005) Nitrate leaching in intensive arable agriculture in northern France: effect of farming practices, soils and crop rotations. Agric Ecosys Environ 111:292–310CrossRefGoogle Scholar
  12. Beaudoin N, Launay M, Sauboua E, et al. (2008) Evaluation of the soil crop model STICS over 8 years against the “on farm” database of Bruyères catchment. Eur J Agron 29:46–57CrossRefGoogle Scholar
  13. Bellier S (2013) Modélisation de la pollution nitrique de la nappe des Calcaires du Champigny—application en vue d’actions de prévention aux captages prioritaires de la fosse de Melun et de la basse vallée de l’Yerres. Ph D thesis, MINES ParisTech, 312pGoogle Scholar
  14. Behrendt H, Hube P, Kornmilch M, Opitz D, Schmoll O, Scholz G, Uebe R (2000) Nutrient emissions into river basins of Germany. UBA-Texte 23/00, Berlin, 261ppGoogle Scholar
  15. Billen G, Thieu V, Garnier J, Silvestre M (2009) Modelling the N cascade in regional watersheds: the case study of the seine, Somme and Sheldt rivers. Agric Ecosys Environ 133:234–246CrossRefGoogle Scholar
  16. Billy C, Birgand F, Sebilo M, et al. (2008) Nitrate dynamics in artificially drained nested watersheds. Phys Chem Earth 36:506–514CrossRefGoogle Scholar
  17. Brisson N, Mary B, Ripoche D, et al. (1998) STICS: a generic model for the simulation of crops and their water and nitrogen balance. I- theory and parametrization applied to wheat and corn. Agronomie 18:311–346CrossRefGoogle Scholar
  18. Brisson N, Gary C, Justes E, et al. (2003) An overview of the crop model STICS. Eur J Agron 18:309–332CrossRefGoogle Scholar
  19. Brisson N, Launay M, Mary B, Beaudoin N (2009) Conceptual basis, formalisations and parameterization of the STICS crop model. INRA Science Update, 297 pGoogle Scholar
  20. Caraco NF, Cole JJ (1999) Human impact on nitrate export: an analysis using major world rivers. Ambio 28 (2), 167–170Google Scholar
  21. Challinor A, Martre P, Asseng S, Thornton P, Ewert F (2014) Commentary: making the most of climate impacts ensembles. Nat Clim Chang 4(2):77–80CrossRefGoogle Scholar
  22. Constantin J, Mary B, Laurent F, et al. (2010) Effects of catch crops, no till and reduced nitrogen fertilization on nitrogen leaching and balance in three long-term experiments. Agric Ecosys Environ 135:268–278CrossRefGoogle Scholar
  23. Constantin J, Beaudoin N, Launay M, et al. (2012) Long-term nitrogen dynamic in various catch crop scenarios: test and simulations with STICS model in temperate country. Agric Ecosys Environ 147:36–46CrossRefGoogle Scholar
  24. Coucheney E, Buis S, Launay M, et al. (2015) Accuracy, robustness and behavior of the STICS 8.2.2 soil-crop model for plant, water and nitrogen outputs: evaluation over a wide range of agro-environmental conditions in France. Environ Model Soft 64:177–190CrossRefGoogle Scholar
  25. Courault D, Hadria R, Ruget F, et al. (2010) Combined use of FORMOSAT-2 images with a crop model for biomass and water monitoring of permanent grassland in Mediterranean region. Hydrol Earth Syst Sci 14:1731–1744CrossRefGoogle Scholar
  26. Davies DB, Sylvester-Bradley R (1995) The contribution of fertiliser nitrogen to leachable nitrogen in the UK: a review. J Sci Food Agric 68:399–406CrossRefGoogle Scholar
  27. de Wit A, Duveiller G, Defourny P (2012) Estimating regional winter wheat yield with WOFOST through the assimilation of green area index retrieved from MODIS observations. Agric For Meteorol 164:39–52CrossRefGoogle Scholar
  28. Donet I, Le Bas C, Ruget F, Rabaud V (2001) Informations et suivi objectif des prairies. Guide d’utilisation. Agreste Chiffres et Données, 134, MAF, Paris, France. 55 pGoogle Scholar
  29. Ewert F, van Ittersum MK, Heckelei T, Therond O, Bezlepkina I, Andersen E (2011) Scale changes and model linking methods for integrated assessment of Agri-environmental systems. Agric Ecosyst Environ 142:6–17CrossRefGoogle Scholar
  30. FAO (1970) Crop evapotranspiration - Guidelines for computing crop water requirements, Chapter 2, Penman-Monteith equation,
  31. Folberth C, Yang H, Wang X, Abbaspour KC (2012) Impact of input data resolution and extent of harvested areas on crop yield estimates in large-scale agricultural modeling for maize in the USA, Ecological Modelling 235–236, 8–18Google Scholar
  32. Gomez E (2002) Modélisation intégrée du transfert de nitrate à l’échelle régionale dans un système hydrologique. Application au bassin de la Seine. Ph D thesis, MINES ParisTech, 291 pGoogle Scholar
  33. Gorres J, Gold AJ (1996) Incorporating spatial variability into GIS to estimate nitrate leaching at the aquifer scale. J Environ Qual 25:491–498CrossRefGoogle Scholar
  34. Guillemin C, Roux JC (1992) Pollution des eaux souterraines en France. Editions du BRGM, Paris, 175 pGoogle Scholar
  35. Hall D, Schaffer MJ, Waskom RM, Delgado JA (2001) Regional nitrate leaching variability: what makes a difference in northeastern Colorado? J Am Wat Res Ass 37:139–150CrossRefGoogle Scholar
  36. Hoffmann H, Zhao G, Asseng S, et al. (2016) Impact of spatial soil and climate input data aggregation on regional yield simulations. PLoS One 11(4):0151782CrossRefGoogle Scholar
  37. Houlès V, Mary B, Guerif M, et al. (2004) Evaluation of the ability of the crop model STICS to recommend nitrogen fertilisation rates according to agro-environmental criteria. Agronomie 24:339–349CrossRefGoogle Scholar
  38. INRA (1998) Base de données géographique des sols de France à l’échelle du 1/1 000 000. INRA Infosol, Orléans, FranceGoogle Scholar
  39. Jego G, Martinez M, Antiguadad I, et al. (2008) Evaluation of the impact of various agricultural practices on nitrate leaching under the root zone of potato and sugar beet using the STICS soil-crop model. STOTEN 394:207–221Google Scholar
  40. Jégo G, Pattey E, Mesbah SM, Liu J, Duchesne I (2015) Impact of the spatial resolution of climatic data and soil physical properties on regional corn yield predictions using the STICS crop model. Int J Appl Earth Obs Geoinf 41:11–22CrossRefGoogle Scholar
  41. Kersebaum KC, Beblik AJ (2001) Performance of nitrogen dynamics model applied to evaluate agricultural management practices. In Shaffer MJ, Liwang Ma, Hansen S (Eds.), Modeling carbon and nitrogen dynamics for soil management. Lewis Publishers, pp 550–569Google Scholar
  42. Kersebaum K, Wenkel K (1998) Modelling water and nitrogen dynamics at three different spatial scales - influence of different data aggregation levels on simulation results. Nutr Cycl Agroecosyst 50:313–319CrossRefGoogle Scholar
  43. King D, Daroussin J, Hollis JM, Jamagne M et al (1994) A geographical knowledge database on soil properties for environmental studies. Final report of EC contract N°3392004. INRA, Orleans, France, 50 ppGoogle Scholar
  44. Laurent F, Ruelland D (2011) Assessing impacts of alternative land use and agricultural practices on nitrate at the catchment scale. J Hydrol 409:440–450CrossRefGoogle Scholar
  45. Le Bas C, King D, Daroussin J (1997) A tool for estimating soil water available for plants using the 1:1000,000 scale Soil Geographical Data Base of Europe. In: Beek KJ, de Bie KA, Driessen PM (Eds), Geo-information for sustainable land management. International journal of aerospace survey and earth sciences, Enschede, Pays-Bas, 10 pGoogle Scholar
  46. Ledoux E, Gomez E, Monget JM, et al. (2007) Agriculture and groundwater nitrate contamination in the Seine basin: the STICS–MODCOU modelling chain. STOTEN 375:33–47Google Scholar
  47. Letcher RA, Giupponi C (2005) Policies and tools for sustainable water management in the European Union. Environ Model Softw 20:93–98CrossRefGoogle Scholar
  48. Li Y, Zhou Q, Zhou J, Zhang G, Chen C, Wang J (2014) Assimilating remote sensing information into a coupled hydrology-crop growth model to estimate regional maize yield in arid regions. Ecol Model 291:15–27CrossRefGoogle Scholar
  49. Lizumi T, Tanaka Y, Sakurai G, Ishigooka Y, Yokozawa M (2014) Dependency of parameter values of a crop model on the spatial scale of simulation. Journal of Advances in Modeling Earth Systems 6:527–540CrossRefGoogle Scholar
  50. Loague K, Corwin DL (1996) Uncertainty in regional-scale assessments of non-point source pollutants. In: Application of GIS to the modelling of non-point source pollutants in the vadose zone. SSSA Special publication 48 pGoogle Scholar
  51. Loague K, Green RE (1991) Statistical and graphical method for evaluating solute transport models: overview and application. J Contam Hydrol 7:51–73CrossRefGoogle Scholar
  52. Loos S, Middelkoop H, van der Perk M, van Beek R (2009) Large scale nutrient modelling using globally available datasets: a test for the Rhine basin. J Hydrol 369:403–415CrossRefGoogle Scholar
  53. Lord EI, Anthony SG (2000) MAGPIE: a modelling framework for evaluating nitrate losses at national and catchment scale. Soil Use Manag 16:167–174CrossRefGoogle Scholar
  54. Mary B, Beaudoin N, Benoit M (1997) Prévention de la pollution nitrique à l’échelle du bassin d’alimentation en eau. In: Lemaire G, Nicolardot N, Eds. Maîtrise de l’azote dans les agrosystèmes, INRA Editions, 83, 289–312Google Scholar
  55. Mignolet C, Schott C, Benoit M (2004) Spatial dynamics of agricultural practices on a basin territory: a retrospective study to implement models simulating nitrate flow. The case of the seine basin. Agronomie 24:219–236CrossRefGoogle Scholar
  56. Mignolet C, Schott C, Benoit M (2007) Spatial dynamics of farming practices in the seine basin: methods for agronomic approaches on a regional scale. STOTEN 375:13–32Google Scholar
  57. Monteith JL (1972) Solar radiation and productivity of tropical ecosystems. J Appl Ecol 9:747–766CrossRefGoogle Scholar
  58. Moreau P, Ruiz L, Mabon F, et al. (2012) Reconciling technical, economic and environmental efficiency of farming systems in vulnerable areas. Agric Ecosys Environ 147:89–99CrossRefGoogle Scholar
  59. Morell FJ, Yang HS, Cassman KG, et al. (2016) Can crop simulation models be used to predict local to regional maize yields and total production in the US Corn Belt? Field Crop Res 192:1–12CrossRefGoogle Scholar
  60. Normand B, Mary B, Czernichowski I et al (2004) Programme expérimental de suivi de la qualité de l’eau sur trois bassins versants de Picardie faisant l’objet de mesures agri-environnementales. Rapport de synthèse, BRGM, 66 pGoogle Scholar
  61. Oehler F, Bordenave P, Durand P (2007) Variations of denitrification in a farming catchment area. Agric Ecosystems Environ 120:313–324Google Scholar
  62. Oenema O, Kros H, de Vries W (2003) Approaches and uncertainties in nutrient budgets: implications for nutrient management and environmental policies. Europ J. Agronomy 20:3–16Google Scholar
  63. Paux J (1999) Impact de l’introduction de l’irrigation dans les systèmes de culture du Santerre sur les risques de lixiviation des nitrates. ISAB, Beauvais, 74 pGoogle Scholar
  64. Philippe E, Habets F, Ledoux E, et al. (2010) Improvement of the solute transfer in a conceptual unsaturated zone scheme: a case study of the Seine River basin. Hydrol Process 25:752–765CrossRefGoogle Scholar
  65. Puech T, Schott C, Mignolet C (2015) Evolution des systèmes de culture sur le bassin Seine-Normandie depuis les années 2000: construction d’une base de données spatialisée sur les pratiques agricoles.
  66. Quintana-Segui P, Le Moigne P, Durand Y, et al. (2008) Analysis of near-surface atmospheric variables: validation of the SAFRAN analysis over France. J Appl Meteorol Climatol 47:92–107CrossRefGoogle Scholar
  67. Quintana-Segui P, Martin E, Habets F, et al. (2009) Improvement, calibration and validation of a distributed hydrological model over France. Hydrol Earth Syst Sci 13:163–181CrossRefGoogle Scholar
  68. Ramirez-Villegas J, Koehler AK, & Challinor AJ (2015) Assessing uncertainty and complexity in regional-scale crop model simulations. Eur J AgronomyGoogle Scholar
  69. Refsgaard JC, Henriksen HJ, Harrar N, et al. (2005) Quality assurance in model based water management–review of existing practice and outline of new approaches. Environ Model Softw 20:1201–1215CrossRefGoogle Scholar
  70. Richter GM, Beblik AJ, Schmalstieg K, Richter O (1998) N-dynamics and nitrate leaching under rotational and continuous set-aside - a case study at the field and catchment scale. Agric Ecosys Environ 68:125–138CrossRefGoogle Scholar
  71. Ruiz-Ramos M, Gabriel JL, Vazquez N, Quemada M (2011) Evaluation of nitrate leaching in a vulnerable zone: effect of irrigation water and organic manure application. Span J Agric Res 9:924–937CrossRefGoogle Scholar
  72. Sauboua E (2001) Modélisation stochastique fonctionnelle du transfert d’eau et d’azote sous culture de maïs. Application à l’évaluation de l’impact des pratiques agricoles en plaine de Bièvre. Ph D thesis, Université de Grenoble 1Google Scholar
  73. Schnebelen N (2000) Analyse et modélisation de l’impact de la maîtrise des pratiques agricoles sur la pollution diffuse par les nitrates. Application à l’aquifère des calcaires de Beauce (site de Vilamblain). Ph D thesis, Université d’OrléansGoogle Scholar
  74. Schnebelen N, Nicoullaud B, Bourennane H, et al. (2004) The STICS model to predict nitrate leaching following agricultural practices. Agronomie 24:423–435CrossRefGoogle Scholar
  75. Schott C. Mignolet C, Meynard JM (2010) Les oléoprotéagineux dans les systèmes de culture : évolution des assolements et des successions culturales depuis les années 1970 dans le bassin de la Seine. OCL Oléagineux Corps Gras Lipides 17(5)276–291Google Scholar
  76. Sellami H, La Jeunesse I, Benebdallah S, et al. (2014) Uncertainty analysis in model parameters regionalization: a case study involving the SWAT model in Mediterranean catchments. Hydrol Earth Syst Sci 18:2393–2413CrossRefGoogle Scholar
  77. Silgram M, Anthony SG, Fawcett L, Stromqvist J (2008) Evaluating catchment-scale models for diffuse pollution policy support: some results from EUROHARPS project. Environ Sci Pol 11:153–162CrossRefGoogle Scholar
  78. Sohier C, Degre A, Dautrebande S (2009) From root zone modelling to regional forecasting of nitrate concentration in recharge flows - the case of the Walloon region (Belgium. J Hydrol 369:350–359CrossRefGoogle Scholar
  79. Soltani A, Stoorvogel JJ, Veldkamp A (2013) Model suitability to assess regional potato yield patterns in northern Ecuador. Eur J Agron 48:101–108CrossRefGoogle Scholar
  80. Srinivasan R, Zhang X, Arnold J (2010) SWAT ungauged: hydrological budget and crop yield predictions in the upper Mississipi river basin. ASABE. Transactions 53:1533–1546Google Scholar
  81. Strahler AN (1952) Hypsometric (area-altitude) analysis of erosional topology. Geol Soc Am Bull 63:1117–1142CrossRefGoogle Scholar
  82. ten Berg HFM, Burgers SLGE, Hack-ten Broecke MJD et al (2004) Nitrogen rate, surplus or residue? Performance of selected indicators for nitrate leaching. In: Hatch-Chadwick-Jarvis-Roker (eds), Controlling nitrogen flows and losses, Wageningen Academic Publishers 4: 397–405Google Scholar
  83. Thomasson AJ, Carter AD (1989) Current and future uses of the UK soil water retention dataset. Proc International workshop on indirect methods for estimating the hydraulic properties of unsaturated soils, Riverside, California, 355–358Google Scholar
  84. Tiemeyer B, Moussa R, Lennartz B, Voltz M (2007) MHYDAS-DRAIN: a spatially distributed model for small, artificially drained lowland catchments. Ecol Model 209:2–20CrossRefGoogle Scholar
  85. Tournebize J, Arlot MP, Billy C et al (2008) Quantification et maîtrise des flux de nitrates: de la parcelle drainée au bassin versant. Ingénieries - EAT spécial azote, phosphore et pesticides, 5–25Google Scholar
  86. Van der Ploeg RR, Ringe H, Machulla G (1995) Late fall site-specific soil nitrate upper limits for groundwater protection purposes. J Environ Qual 24:725–733CrossRefGoogle Scholar
  87. Van Drecht G, Bouwman AF, Knoop JM, Beusen AHW, Meinardi CR (2003) Global modeling of the fate of nitrogen from point and nonpoint sources in soils, groundwater, and surface water. Global Biogeochemical Cycles 17(4)1115Google Scholar
  88. Varella H, Guerif M, Buis S, Beaudoin N (2010) Soil properties estimation by inversion of a crop model and observations on crops improves the prediction of agro-environmental variables. Eur J Agron 33:139–147CrossRefGoogle Scholar
  89. Vertès F, Laurent F, Recous S et al (2001) Nitrogen mineralization under bare soils after the destruction of grazed pastures. In: Sustainable management of soil organic matter, Rees RM et al (Eds) CAB International, ISBN 085199 465–2, 239–246Google Scholar
  90. Vilain G, Garnier J, Tallec G, Tournebize J (2012) Indirect N2O emissions from shallow groundwater in an agricultural catchment (Seine Basin, France. Biogeochemistry 111:253–271CrossRefGoogle Scholar
  91. Wagenet RJ, Hutson JL (1996) Scale-dependency of solute transport modeling/GIS applications. J Environ Qual 25:495–510CrossRefGoogle Scholar
  92. Wang E, Cresswell H, Bryan B, Glover M, King D (2009) Modelling farming systems performance at catchment and regional scales to support natural resource management. Journal of. Life Sci 57:101–108Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • N. Beaudoin
    • 1
    Email author
  • N. Gallois
    • 2
  • P. Viennot
    • 2
  • C. Le Bas
    • 3
  • T. Puech
    • 4
  • C. Schott
    • 4
  • S. Buis
    • 5
  • B. Mary
    • 1
  1. 1.INRA, UR 1158 Agro-Impact, site de Laon, Pôle du GriffonBarenton-BugnyFrance
  2. 2.MINES ParisTech/ARMINES, PSL Research University, Centre de GéosciencesFontainebleauFrance
  3. 3.INRA-US 1106 InfosolOrléansFrance
  4. 4.INRA SAD, Unité AsterMirecourtFrance
  5. 5.UMR INRA - UMR 1114 EMMAHAvignonFrance

Personalised recommendations