Environmental Science and Pollution Research

, Volume 24, Issue 3, pp 2197–2204 | Cite as

Laser-induced breakdown spectroscopy for elemental characterization of calcitic alterations on cave walls

  • Léna Bassel
  • Vincent Motto-Ros
  • Florian Trichard
  • Frédéric Pelascini
  • Faten Ammari
  • Rémy Chapoulie
  • Catherine Ferrier
  • Delphine Lacanette
  • Bruno Bousquet
Art and Cultural Heritage

Abstract

Cave walls are affected by different kinds of alterations involving preservative issues in the case of ornate caves, in particular regarding the rock art covering the walls. In this context, coralloids correspond to a facies with popcorn-like aspect belonging to the speleothem family, mostly composed of calcium carbonate. The elemental characterization indicates the presence of elements that might be linked to the diagenesis and the expansion of the alterations as demonstrated by prior analyses on stalagmites. In this study, we report the use of laser-induced breakdown spectroscopy (LIBS) to characterize the elemental composition of one coralloid sample with a portable instrument allowing punctual measurements and a laboratory mapping setup delivering elemental images with spatial resolution at the micrometric scale, being particularly attentive to Mg, Sr, and Si identified as elements of interest. The complementarity of both instruments allows the determination of the internal structure of the coralloid. Although a validation based on a reference technique is necessary, LIBS data reveal that the external layer of the coralloid is composed of laminations correlated to variations of the LIBS signal of Si. In addition, an interstitial layer showing high LIBS signals for Fe, Al, and Si is interpreted to be a detrital clay interface between the external and the internal part of the coralloid. These preliminary results sustain a possible formation scenario of the coralloid by migration of the elements from the bedrock.

Keywords

LIBS Laser-induced breakdown spectroscopy Speleothems Alterations Ornated cave Conservation 

References

  1. Baskar S, Baskar R, Routh J (2011) Biogenic evidences of moonmilk deposition in the Mawmluh Cave, Meghalaya, India. Geomicrobiol J 28(3):252–265CrossRefGoogle Scholar
  2. Bindschedler S, Millière L, Cailleau G, Job D, Verrecchia EP (2012) An ultrastructural approach to analogies between fungal structures and needle fiber calcite. Geomicrobiol J 29(4):301–313CrossRefGoogle Scholar
  3. Borsato A, Frisia S, Jones B, Van der Borg K (2000) Calcite moonmilk: crystal morphology and environment of formation in caves in the Italian Alps. J Sed Res 70(5):12CrossRefGoogle Scholar
  4. Borsato A, Frisia S, Fairchild IJ, Somogyi A, Susini J (2007) Trace element distribution in annual stalagmite laminae mapped by micrometer-resolution X-ray fluorescence: implications for incorporation of environmentally significant species. Geochim Cosmochim Ac 71(6):1494–1512CrossRefGoogle Scholar
  5. Bourdin C, Douville E, Genty D (2011) Alkaline-earth metal and rare-earth element incorporation control by ionic radius and growth rate on a stalagmite from the Chauvet Cave, Southeastern France. Chem Geol 290(1-2):1–11CrossRefGoogle Scholar
  6. Cacchio P, Ferrini G, Ercole C, Del Gallo M, Lepidi A (2014) Biogenicity and characterization of moonmilk in the Grotta Nera (Majella National Park, Abruzzi, Central Italy. J Cave Karst Stud 76(2):15CrossRefGoogle Scholar
  7. Caddeo GA, Railsback LB, De Waele J, Frau F (2015) Stable isotope data as constraints on models for the origin of coralloid and massive speleothems: the interplay of substrate, water supply, degassing, and evaporation. Sediment Geol 318:130–141CrossRefGoogle Scholar
  8. Cailleau G, Verrechia EP, Braissant O, Laurent E (2009) The biogenic origin of needle fiber calcite. Sedimentology 56(6):1858–1875CrossRefGoogle Scholar
  9. Canaveras JC, Cuezva S, Sanchez-Moral S, Lario J, Laiz L, Gonzalez JM, Saiz-Jimenez C (2006) On the origin of fiber calcite crystals in moonmilk deposits. Naturwissenschaften 93(1):27–32CrossRefGoogle Scholar
  10. Cremers, D. A., L. J. Radziemski (2013). Handbook of laser-induced breakdown spectroscopy. WileyGoogle Scholar
  11. Cuñat J, Fortes FJ, Cabalín LM, Carrasco F, Simón MD, Laserna JJ (2008) Man-portable laser-induced breakdown spectroscopy system for in situ characterization of karstic formations. Appl Spectrosc 62(11):1250–1255CrossRefGoogle Scholar
  12. Curry MD, Boston PJ, Spilde MN, Baichtal JF, Campbell AR (2009) Cottonballs, a unique subaqeous moonmilk, and abundant subaerial moonmilk in Cataract Cave, Tongass National Forest, Alaska. Int J Speleol 38(2):17CrossRefGoogle Scholar
  13. De Carvalho GGA, Santos D Jr, Da Silva Gomes M, Nunes LC, Guerra MBB, Krug FJ (2015) Influence of particle size distribution on the analysis of pellets of plant materials by laser-induced breakdown spectroscopy. Spectrochim Acta B105:130–135CrossRefGoogle Scholar
  14. Devès G, Perroux A-S, Bacquart T, Plaisir C, Rose J, Jaillet S, Ghaleb B, Ortega R, Maire R (2012) Chemical element imaging for speleothem geochemistry: application to a uranium-bearing corallite with aragonite diagenesis to opal (Eastern Siberia, Russia). Chem Geol 294-295:190–202CrossRefGoogle Scholar
  15. El Haddad J, Canioni L, Bousquet B (2014) Good practices in LIBS analysis: review and advices. Spectrochim Acta B 101:171–182CrossRefGoogle Scholar
  16. Fairchild IJ, Treble PC (2009) Trace elements in speleothems as recorders of environmental change. Quaternary Sci Rev 28(5-6):449–468CrossRefGoogle Scholar
  17. Fairchild IJ, Baker A, Borsato A, Frisia S, Hinton RW, McDermott F, Tooth AF (2001) Annual to sub-annual resolution of multiple trace-element trends in speleothems (English). J Geol Soc London 158(5):831–841CrossRefGoogle Scholar
  18. Fairchild IJ, Smith CL, Baker A, Fuller L, Spötl C, Mattey D, McDermott F, E.I.M.F (2006) Modification and preservation of environmental signals in speleothems. Earth Sci Rev 75(1-4):105–153CrossRefGoogle Scholar
  19. Fortes F, Laserna J (2010) The development of fieldable laser-induced breakdown spectrometer: no limits on the horizon. Spectrochim Acta B 65:975–990CrossRefGoogle Scholar
  20. Galbács G, Kevei-Bárány I, Szőke E, Jedlinszki N, Gornushkin IB, Galbács MZ (2011) A study of stalagmite samples from Baradla Cave (Hungary) by laser induced plasma spectrometry with automatic signal correction. Microchem J 99(2):406–414CrossRefGoogle Scholar
  21. Hahn DW, Omenetto N (2012) Laser-induced breakdown spectroscopy (LIBS), part II: review of instrumental and methodological approaches to material analysis and applications to different fields. Appl Spectrosc 66:347–419CrossRefGoogle Scholar
  22. Hill, C. A. and P. Forti (1997). Cave minerals of the world, National speleological societyGoogle Scholar
  23. James NP (1972) Holocene and Pleistocene calcareous crust (caliche) profiles: criteria for subaerial exposure. J of Sediment Res 42(4):817–836Google Scholar
  24. Kuhn K, Meima JA, Rammlmair D, Ohlendorf C (2016) Chemical mapping of mine waste drill cores with laser-induced breakdown spectroscopy (LIBS) and energy dispersive X-ray fluorescence (EDXRF) for mineral resource exploration. J Geochem Explor 161:72–84CrossRefGoogle Scholar
  25. Lacanette D, Large D, Ferrier C, Aujoulat N, Bastian F, Denis A, Jurado V, Kervazo B, Konik S, Lastennet R, Malaurent P, Saiz-Jimenez C (2013) A laboratory cave for the study of wall degradation in rock art caves: an implementation in the Vézère area. J Archaeol Sci 40(2):894–903CrossRefGoogle Scholar
  26. Lacelle D, Lauriol B, Clark ID (2004) Seasonal isotopic imprint in moonmilk from Caverne de l'Ours (Quebec, Canada): implications for climatic reconstruction. Can J Earth Sci 41(12):1411–1423CrossRefGoogle Scholar
  27. Ma QL, Motto-Ros V, Lei WQ, Boueri M, Zheng LJ, Zeng HP, Bar-Matthews M, Ayalon A, Panczer G, Yu J (2010) Multi-elemental mapping of a speleothem using laser-induced breakdown spectroscopy. Spectrochim Acta B 65(8):707–714CrossRefGoogle Scholar
  28. Martinez-Arkarazo I, Angulo M, Zuloaga O, Usobiaga A, Madariaga JM (2007) Spectroscopic characterisation of moonmilk deposits in Pozalagua tourist cave (Karrantza, Basque Country, North of Spain). Spectrochim Acta A Mol 68(4):1058–1064CrossRefGoogle Scholar
  29. McMillan NJ, Rees S, Kochelek K, McManus C (2014) Geological applications of laser-induced breakdown spectroscopy. Geostand and Geoanal Res 38(3):329–343CrossRefGoogle Scholar
  30. Miziolek, A.W., V. Palleschi and I. Schechter (2008). Laser induced breakdown spectroscopy. Cambridge University PressGoogle Scholar
  31. Motto-Ros V, Sancey L, Wang XC, Ma QL, Lux F, Bai XS, Panczer G, Tillement O, Yu J (2013) Mapping nanoparticles injected into a biological tissue using laser-induced breakdown spectroscopy. Spectrochim Acta B 87:168–174CrossRefGoogle Scholar
  32. Motto-Ros V, Negre E, Pelascini F, Panczer G, Yu J (2014) Precise alignment of the collection fiber assisted by real-time plasma imaging in laser-induced breakdown spectroscopy. Spectrochim Acta B 92:60–69CrossRefGoogle Scholar
  33. Negre E, Motto-Ros V, Pelascini F, Lauper S, Denis D, Yu J (2015) On the performance of laser-induced breakdown spectroscopy for quantitative analysis of minor and trace elements in glass. J Anal At Spectrom 30:417–425CrossRefGoogle Scholar
  34. Noll R (2012) Laser-induced breakdown spectroscopy: fundamentals and applications. Springer, Berlin HeidelbergCrossRefGoogle Scholar
  35. Phillips SE, Self PG (1987) Morphology, crystallography and origin of needle fiber calcite in quaternary calcretes of South Australia. Aust J Soil Res 25(4):429–444CrossRefGoogle Scholar
  36. Sancey L, Motto-Ros V, Busser B, Kotb S, Benoit JM, Piednoir A, Lux F, Tillement O, Panczer G, Yu J (2014) Laser spectrometry for multi-elemental imaging of biological tissues. Sci Rep 4:6065CrossRefGoogle Scholar
  37. Sanchez-Moral S, Portillo MC, Janices I, Cuezva S, Fernández-Cortés A, Cañaveras JC, Gonzalez JM (2012) The role of microorganisms in the formation of calcitic moonmilk deposits and speleothems in Altamira Cave. Geomorphology 139-140:285–292CrossRefGoogle Scholar
  38. Sheta SA, Di Carlo G, Ingo GM, Harith MA (2016) Surface morphology study of some Cu–Ni reference alloys using laser induced breakdown spectroscopy. Mater Chem Phys 173:516–523CrossRefGoogle Scholar
  39. Sinclair DJ, Banner JL, Taylor FW, Partin J, Jenson J, Mylroie J, Goddard E, Quinn T, Jocson J, Miklavič B (2012) Magnesium and strontium systematics in tropical speleothems from the Western Pacific. Chem Geol 294-295:1–17CrossRefGoogle Scholar
  40. Spizzichino V, Fantoni R (2014) Laser induced breakdown spectroscopy in archeometry: a review of its application and future perspectives. Spectrochim Acta B 99:201–209CrossRefGoogle Scholar
  41. Vadillo JM, Vadillo I, Carrasco F, Laserna JJ (1998) Spatial distribution profiles of magnesium and strontium in speleothems using laser-induced breakdown spectrometry. J Anal Chem 361:119–123CrossRefGoogle Scholar
  42. Verrecchia EPVKE (1994) Needle-fiber calcite: a critical review and a proposed classification. J of Sediment Res 64(3)Google Scholar
  43. White W (2012) Speleothem microstructure/speleothem ontogeny: a review of Western contributions. Int J of Speleol 41(2):329–358CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Léna Bassel
    • 1
  • Vincent Motto-Ros
    • 2
  • Florian Trichard
    • 2
  • Frédéric Pelascini
    • 3
  • Faten Ammari
    • 1
  • Rémy Chapoulie
    • 1
  • Catherine Ferrier
    • 4
  • Delphine Lacanette
    • 5
  • Bruno Bousquet
    • 6
  1. 1.IRAMAT-CRP2A, UMR CNRS 5060, Maison de l’ArchéologieUniversité Bordeaux MontaignePessac CedexFrance
  2. 2.Institut Lumière Matière, UMR 5306Université de Lyon 1 – CNRS, Université de LyonVilleurbanne CedexFrance
  3. 3.CRITT Matériaux AlsaceSchiltigheimFrance
  4. 4.PACEA, UMR CNRS 5199Université BordeauxPessac CedexFrance
  5. 5.I2M, UMR CNRS 5295Université BordeauxPessacFrance
  6. 6.CELIA, UMR CNRS 5107Université BordeauxTalence CedexFrance

Personalised recommendations