Advertisement

Environmental Science and Pollution Research

, Volume 23, Issue 23, pp 23742–23749 | Cite as

Degradation of orange dyes and carbamazepine by soybean peroxidase immobilized on silica monoliths and titanium dioxide

  • Paola Calza
  • Dario Zacchigna
  • Enzo LaurentiEmail author
Research Article

Abstract

In this paper, the removal of three common dyes (orange I, orange II, and methylorange) and of the anticonvulsant drug carbamazepine from aqueous solutions by means of enzymatic and photocatalytic treatment was studied. Soybean peroxidase (SBP) was used as biocatalyst, both free in solution and immobilized on silica monoliths, and titanium dioxide as photocatalyst. The combination of the two catalysts led to a faster (about two to four times) removal of all the orange dyes compared to the single systems. All the dyes were completely removed within 2 h, also in the presence of immobilized SBP. As for carbamazepine, photocatalytic treatment prevails on the enzymatic degradation, but the synergistic effect of two catalysts led to a more efficient degradation; carbamazepine’s complete disappearance was achieved within 60 min with combined system, while up to 2 h is required with TiO2 only.

Keywords

Soybean peroxidase Azo dye Orange Methylorange Immobilization Titanium dioxide Carbamazepine 

Notes

Acknowledgments

The authors would like to thank Prof. D. Sacco (Department of Agricultural, Forest and Food Sciences, University of Turin) for the kind supply of fresh soybean seeds.

The Marie Sklodowska-Curie Research and Innovation Staff Exchange project funded by the European Commission H2020-MSCA-RISE-2014 within the framework of the research project Mat4treaT (project number 645551) is acknowledged. Compagnia di San Paolo and University of Torino are gratefully acknowledged for funding Project Torino_call2014_L2_126 through “Bando per il finanziamento di progetti di ricerca di Ateneo – anno 2014” (Project acronym: Microbusters).

References

  1. Arpin-Pont L, Bueno MJM, Gomez E, Fenet H (2016) Occurrence of PPCPs in the marine environment: a review. Environ Sci Pollut Res 23:4978–4991. doi: 10.1007/s11356-014-3617-x CrossRefGoogle Scholar
  2. Bassi A, Geng Z, Gijzen M (2004) Enzymatic removal of phenol and chlorophenols using soybean seed hulls. Eng Life Sci 4:125–130. doi: 10.1002/elsc.200420021 CrossRefGoogle Scholar
  3. Boscolo B, Laurenti E, Ghibaudi E (2006) ESR spectroscopy investigation of the denaturation process of soybean peroxidase induced by guanidine hydrochloride, DMSO or heat. Protein J 25:379–390. doi: 10.1007/s10930-006-9024-5 CrossRefGoogle Scholar
  4. Calza P, Avetta P, Rubulotta G, Sangermano M, Laurenti E (2014) TiO2-soybean peroxidase composite materials as a new photocatalytic system. Chem Eng J 239:87–92. doi: 10.1016/j.cej.2013.10.098 CrossRefGoogle Scholar
  5. Chengalroyen MD, Dabbs ER (2013) The microbial degradation of azo dyes: minireview. World J Microbiol Biotechnol 29:389–399. doi: 10.1007/s11274-012-1198-8 CrossRefGoogle Scholar
  6. DiCosimo R, McAuliffe J, Poulose AJ, Bohlmann G (2013) Industrial use of immobilized enzymes. Chem Soc Rev 42:6437–6474. doi: 10.1039/c3cs35506c CrossRefGoogle Scholar
  7. Gacche RN, Firdaus Q, Sagar AD (2003) Soybean (Glycine max L.) seed coat peroxidase immobilized on fibrous aromatic polyamide: a strategy for decreasing phenols from industrial wastewater. J Sci Ind Res (India) 62:1090–1093Google Scholar
  8. Garcia-Galan C, Berenguer-Murcia Á, Fernandez-Lafuente R, Rodrigues RC (2011) Potential of different enzyme immobilization strategies to improve enzyme performance. Adv Synth Catal 353:2885–2904. doi: 10.1002/adsc.201100534 CrossRefGoogle Scholar
  9. Ghaemmaghami F, Alemzadeh I, Motamed S (2010) Seed coat soybean peroxidase: extraction and biocatalytic properties determination. Iran J Chem Eng 7:28–38CrossRefGoogle Scholar
  10. Gillikin JW, Graham JS (1991) Purification and developmental analysis of the major anionic peroxidase from the seed coat of Glycine max. Plant Physiol 96:214–220CrossRefGoogle Scholar
  11. Guieysse B, Norvill ZN (2014) Sequential chemical–biological processes for the treatment of industrial wastewaters: review of recent progresses and critical assessment. J Hazard Mater 267:142–152. doi: 10.1016/j.jhazmat.2013.12.016 CrossRefGoogle Scholar
  12. Gupta VK, Suhas (2009) Application of low-cost adsorbents for dye removal—a review. J Environ Manag 90:2313–2342. doi: 10.1016/j.jenvman.2008.11.017 CrossRefGoogle Scholar
  13. Hartmann M, Kostrov X (2013) Immobilization of enzymes on porous silicas—benefits and challenges. Chem Soc Rev 42:6277–6289. doi: 10.1039/c3cs60021a CrossRefGoogle Scholar
  14. Henriksen A, Mirza O, Indiani C, Teilum K, Smulevich G, Welinder KG, Gajhede M (2001) Structure of soybean seed coat peroxidase: a plant peroxidase with unusual stability and haem-apoprotein interactions. Protein Sci 10:108–115. doi: 10.1110/ps.37301 CrossRefGoogle Scholar
  15. Husain Q (2010) Peroxidase mediated decolorization and remediation of wastewater containing industrial dyes: a review. Rev Environ Sci Bio/Technology 9:117–140. doi: 10.1007/s11157-009-9184-9 CrossRefGoogle Scholar
  16. Kalsoom U, Ashraf SS, Meetani MA, Rauf MA, Bhatti HN (2012) Degradation and kinetics of H2O2 assisted photochemical oxidation of Remazol turquoise blue. Chem Eng J 200-202:373–379. doi: 10.1016/j.cej.2012.06.058 CrossRefGoogle Scholar
  17. Kalsoom U, Ashraf SS, Meetani MA, Rauf MA, Bhatti HN (2013) Mechanistic study of a diazo dye degradation by soybean peroxidase. Chem Cent J 7:93. doi: 10.1186/1752-153X-7-93 CrossRefGoogle Scholar
  18. Kalsoom U, Bhatti HN, Asgher M (2015) Characterization of plant peroxidases and their potential for degradation of dyes: a review. Appl Biochem Biotechnol 176:1529–1550. doi: 10.1007/s12010-015-1674-3 CrossRefGoogle Scholar
  19. Kamal JKA, Behere DV (2002) Thermal and conformational stability of seed coat soybean peroxidase. Biochemistry 41:9034–9042. doi: 10.1021/bi025621e CrossRefGoogle Scholar
  20. Khin MM, Nair AS, Babu VJ, Murugan R, Ramakrishna S (2012) A review on nanomaterials for environmental remediation. Energy Environ Sci 5:8075–8109. doi: 10.1039/c2ee21818f CrossRefGoogle Scholar
  21. Laurenti E, dos Santos Vianna Jr A (2016) Enzymatic microreactors in biocatalysis: history, features, and future perspectives. Biocatalysis 1:148–165. doi: 10.1515/boca-2015-0008 CrossRefGoogle Scholar
  22. Longoria A, Tinoco R, Torres E (2010) Enzyme technology of peroxidases: immobilization, chemical and genetic modification. In: Torres E, Ayala M (eds) Biocatalysis based on heme peroxidases. Springer, Berlin, Heidelberg, pp. 209–243. doi: 10.1007/978-3-642-12627-7_9
  23. Lu W, Uetrecht JP (2008) Peroxidase-mediated bioactivation of hydroxylated metabolites of carbamazepine and phenytoin. Drug Metab Dispos 36:1624–1636. doi: 10.1124/dmd.107.019554 CrossRefGoogle Scholar
  24. Magnacca G, Laurenti E, Vigna E, Franzoso F, Tomasso L, Montoneri E, Boffa V (2012) Refuse derived bio-organics and immobilized soybean peroxidase for green chemical technology. Process Biochem 47:2025–2031. doi: 10.1016/j.procbio.2012.07.021 CrossRefGoogle Scholar
  25. Magner E (2013) Immobilisation of enzymes on mesoporous silicate materials. Chem Soc Rev 42:6213–6222. doi: 10.1039/c2cs35450k CrossRefGoogle Scholar
  26. Marchis T, Avetta P, Bianco-Prevot A, Fabbri D, Viscardi G, Laurenti E (2011) Oxidative degradation of Remazol turquoise blue G 133 by soybean peroxidase. J Inorg Biochem 105:321–327. doi: 10.1016/j.jinorgbio.2010.11.009 CrossRefGoogle Scholar
  27. Martínez-Huitle CA, Brillas E (2009) Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review. Appl Catal B Environ 87:105–145. doi: 10.1016/j.apcatb.2008.09.017 CrossRefGoogle Scholar
  28. Mehrjouei M, Müller S, Möller D (2015) A review on photocatalytic ozonation used for the treatment of water and wastewater. Chem Eng J 263:209–219. doi: 10.1016/j.cej.2014.10.112 CrossRefGoogle Scholar
  29. Montoneri E, Bianco Prevot A, Avetta P, Arques A, Carlos L, Magnacca G, Laurenti E, Tabasso S (2013) Food wastes conversion to products for use in chemical and environmental technology, material science and agriculture. In: Kazmi A, Shuttleworth P (eds) The economic utilisation of food co-products. RSC Green Chemistry, pp 64–109Google Scholar
  30. Ngo TT, Lenhoff HM (1980) A sensitive and versatile chromogenic assay for peroxidase and peroxidase-coupled reactions. Anal Biochem 105:389–397. doi: 10.1016/0003-2697(80)90475-3 CrossRefGoogle Scholar
  31. Oller I, Malato S, Sánchez-Pérez JA (2011) Combination of advanced oxidation processes and biological treatments for wastewater decontamination—a review. Sci Total Environ 409:4141–4166. doi: 10.1016/j.scitotenv.2010.08.061 CrossRefGoogle Scholar
  32. Oturan MA, Aaron J-J (2014) Advanced oxidation processes in water/wastewater treatment: principles and applications. A review. Crit Rev Environ Sci Technol 44:2577–2641. doi: 10.1080/10643389.2013.829765 CrossRefGoogle Scholar
  33. Ozgun H, Dereli RK, Ersahin ME, Kinaci C, Spanjers H, van Lier JB (2013) A review of anaerobic membrane bioreactors for municipal wastewater treatment: integration options, limitations and expectations. Sep Purif Technol 118:89–104. doi: 10.1016/j.seppur.2013.06.036 CrossRefGoogle Scholar
  34. Pearce RE, Vakkalagadda GR, Steven Leeder J (2002) Pathways of carbamazepine bioactivation in vitro I. Characterization of human cytochromes P450 responsible for the formation of 2- and 3-hydroxylated metabolites. Drug Metab Dispos 30:1170–1179. doi: 10.1124/dmd.30.11.1170 CrossRefGoogle Scholar
  35. Prasse C, Stalter D, Schulte-Oehlmann U, Oehlmann J, Ternes TA (2015) Spoilt for choice: a critical review on the chemical and biological assessment of current wastewater treatment technologies. Water Res 87:237–270. doi: 10.1016/j.watres.2015.09.023 CrossRefGoogle Scholar
  36. Ramirez-Montoya LA, Hernandez-Montoya V, Montes-Moran MA, Jauregui-Rincon J, Cervantes FJ (2015) Decolorization of dyes with different molecular properties using free and immobilized laccases from Trametes versicolor. J Mol Liq 212:30–37. doi: 10.1016/j.molliq.2015.08.040 CrossRefGoogle Scholar
  37. Richardson SD, Ternes TA (2014) Water analysis: emerging contaminants and current issues. Anal Chem 86:2813–2848. doi: 10.1021/ac500508t CrossRefGoogle Scholar
  38. Santos LHMLM, Gros M, Rodriguez-Mozaz S, Delerue-Matos C, Pena A, Barcelò D, Montenegro MCBSM (2013) Contribution of hospital effluents to the load of pharmaceuticals in urban wastewaters: identification of ecologically relevant pharmaceuticals. Sci Total Environ 461-462:302–316. doi: 10.1016/j.scitotenv.2013.04.077 CrossRefGoogle Scholar
  39. Saratale RG, Saratale GD, Chang JS, Govindwar SP (2011) Bacterial decolorization and degradation of azo dyes: a review. J Taiwan Inst Chem Eng 42:138–157. doi: 10.1016/j.jtice.2010.06.006 CrossRefGoogle Scholar
  40. Sarayu K, Sandhya S (2012) Current technologies for biological treatment of textile wastewater – a review. Appl Biochem Biotechnol 167:645–661. doi: 10.1007/s12010-012-9716-6
  41. Sheldon RA, Van Pelt S (2013) Enzyme immobilisation in biocatalysis: why, what and how. Chem Soc Rev 42:6223–6235. doi: 10.1039/c3cs60075k CrossRefGoogle Scholar
  42. Silva MC, Torres JA, de Sa LRV, Chagas PMB, Ferreira-Leitao VS, Correa AD (2013) The use of soybean peroxidase in the decolourization of Remazol brilliant blue R and toxicological evaluation of its degradation products. J Mol Catal B-Enzymatic 89:122–129. doi: 10.1016/j.molcatb.2013.01.004 CrossRefGoogle Scholar
  43. Singh RL, Singh PK, Singh RP (2015) Enzymatic decolorization and degradation of azo dyes—a review. Int Biodeterior Biodegradation 104:21–31. doi: 10.1016/j.ibiod.2015.04.027 CrossRefGoogle Scholar
  44. Steevensz A, Madur S, Al-Ansari MM, Taylor KE, Bewtra JK, Biswas N (2013) A simple lab-scale extraction of soybean hull peroxidase shows wide variation among cultivars. Ind Crop Prod 48:13–18. doi: 10.1016/j.indcrop.2013.03.030 CrossRefGoogle Scholar
  45. Strong PJ, Claus H (2011) Laccase: a review of its past and its future in bioremediation. Crit Rev Environ Sci Technol 41:373–434. doi: 10.1080/10643380902945706 CrossRefGoogle Scholar
  46. Stuart M, Lapworth D, Crane E, Hart A (2012) Review of risk from potential emerging contaminants in UK groundwater. Sci Total Environ 416:1–21. doi: 10.1016/j.scitotenv.2011.11.072 CrossRefGoogle Scholar
  47. Weetall HH (1993) Preparation of immobilized proteins covalently coupled through silane coupling agents to inorganic supports. Appl Biochem Biotechnol 41:157–188. doi: 10.1007/BF02916421 CrossRefGoogle Scholar
  48. Zhang A, Fang L, Wang J, Liu W (2013) Enzymatic decolorization of Orange II: optimization by response surface methodology and pathway. Environ Prog Sustain Energy 32:294–301. doi: 10.1002/ep.11628 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of TurinTorinoItaly

Personalised recommendations