Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Microbial biotransformation of furosemide for environmental risk assessment: identification of metabolites and toxicological evaluation

Abstract

Some widely prescribed drugs are sparsely metabolized and end up in the environment. They can thus be a focal point of ecotoxicity, either themselves or their environmental transformation products. In this context, we present a study concerning furosemide, a diuretic, which is mainly excreted unchanged. We investigated its biotransformation by two environmental fungi, Aspergillus candidus and Cunninghamella echinulata. The assessment of its ecotoxicity and that of its metabolites was performed using the Microtox test (ISO 11348-3) with Vibrio fischeri marine bacteria. Three metabolites were identified by means of HPLC-MS and 1H/13C NMR analysis: saluamine, a known pyridinium derivative and a hydroxy-ketone product, the latter having not been previously described. This hydroxy-ketone metabolite was obtained with C. echinulata and was further slowly transformed into saluamine. The pyridinium derivative was obtained in low amount with both strains. Metabolites, excepting saluamine, exhibited higher toxicity than furosemide, being the pyridinium structure the one with the most elevated toxic levels (EC50 = 34.40 ± 6.84 mg L−1). These results demonstrate that biotic environmental transformation products may present a higher environmental risk than the starting drug, hence highlighting the importance of boosting toxicological risk assessment related to the impact of pharmaceutical waste.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1

References

  1. Adelin E, Servy C, Cortial S, Levaique H, Gallard JF, Martin MT, Retailleau P, Bussaban B, Lumyong S, Ouazzani J (2011) Biotransformation of natural compounds. Oxido-reduction of Sch-642305 by Aspergillus ochraceus ATCC 1009. Bioorg Med Chem Lett 21:2456–2459. doi:10.1016/j.bmcl.2011.02.063

  2. Agerstrand M, Berg C, Bjorlenius B, Breitholtz M, Brunstrom B, Fick J, Gunnarsson L, Larsson DG, Sumpter JP, Tysklind M, Ruden C (2015) Improving environmental risk assessment of human pharmaceuticals. Environ Sci Technol 49:5336–5345. doi:10.1021/acs.est.5b00302

  3. Al Aukidy M, Verlicchi P, Voulvoulis N (2014) A framework for the assessment of the environmental risk posed by pharmaceuticals originating from hospital effluents. Sci Total Environ 493:54–64. doi:10.1016/j.scitotenv.2014.05.128

  4. Antoine DJ, Williams DP, Regan SL, Park BK (2007) Formation of cytotoxic protein reactive metabolites from furosemide: biological consequences of drug metabolism. Toxicology 240:157–157. doi:10.1016/J.Tox.2007.06.079

  5. Arakawa NS, Gobbo-Neto L, Ambrosio SR, Antonucci GA, Sampaio SV, Pupo MT, Said S, Schmidt TJ, Da Costa FB (2013) Unusual biotransformation products of the sesquiterpene lactone budlein A by Aspergillus species. Phytochemistry 96:92–100. doi:10.1016/j.phytochem.2013.09.022

  6. Asha S, Vidyavathi M (2009) Cunninghamella—a microbial model for drug metabolism studies—a review. Biotechnol Adv 27:16–29. doi:10.1016/j.biotechadv.2008.07.005

  7. Azerad R (1999) Microbial models for drug metabolism. Adv Biochem Eng Biotechnol 63:169–218

  8. Backhaus T, Karlsson M (2014) Screening level mixture risk assessment of pharmaceuticals in STP effluents. Water Res 49:157–165. doi:10.1016/j.watres.2013.11.005

  9. Barra Caracciolo A, Topp E, Grenni P (2015) Pharmaceuticals in the environment: biodegradation and effects on natural microbial communities a review. J Pharm Biomed Anal 106:25–36. doi:10.1016/j.jpba.2014.11.040

  10. Besse JP, Garric J (2008) Human pharmaceuticals in surface waters implementation of a prioritization methodology and application to the French situation. Toxicol Lett 176:104–123. doi:10.1016/J.Toxlet.2007.10.012

  11. Bucher JR, Huff J, Haseman JK, Eustis SL, Davis WE Jr, Meierhenry EF (1990) Toxicology and carcinogenicity studies of diuretics in F344 rats and B6C3F1 mice. 2. Furosemide. J Appl Toxicol 10:369–378. doi:10.1002/jat.2550100510

  12. Celiz MD, Tso J, Aga DS (2009) Pharmaceutical metabolites in the environment: analytical challenges and ecological risks. Environ Toxicol Chem 28:2473–2484. doi:10.1897/09-173.1

  13. Chen LJ, Burka LT (2007) Chemical and enzymatic oxidation of furosemide: formation of pyridinium salts. Chem Res Toxicol 20:1741–1744. doi:10.1021/tx700262z

  14. de Jesus GV, Almeida CM, Rodrigues A, Ferreira E, Benoliel MJ, Cardoso VV (2015) Occurrence of pharmaceuticals in a water supply system and related human health risk assessment. Water Res 72:199–208. doi:10.1016/j.watres.2014.10.027

  15. Dirany A, Efremova Aaron S, Oturan N, Sires I, Oturan MA, Aaron JJ (2011) Study of the toxicity of sulfamethoxazole and its degradation products in water by a bioluminescence method during application of the electro-Fenton treatment. Anal Bioanal Chem 400:353–360. doi:10.1007/s00216-010-4441-x

  16. Fatta-Kassinos D, Vasquez MI, Kummerer K (2011) Transformation products of pharmaceuticals in surface waters and wastewater formed during photolysis and advanced oxidation processes—degradation, elucidation of byproducts and assessment of their biological potency. Chemosphere 85:693–709. doi:10.1016/j.chemosphere.2011.06.082

  17. Felczak A, Bernat P, Rozalska S, Lisowska K (2016) Quinoline biodegradation by filamentous fungus Cunninghamella elegans and adaptive modifications of the fungal membrane composition. Environ Sci Pollut Res Int. doi:10.1007/s11356-016-6116-4

  18. Fent K, Weston AA, Caminada D (2006) Ecotoxicology of human pharmaceuticals. Aquat Toxicol 76:122–159. doi:10.1016/j.aquatox.2005.09.009

  19. Frederic O, Yves P (2014) Pharmaceuticals in hospital wastewater: their ecotoxicity and contribution to the environmental hazard of the effluent. Chemosphere 115:31–39. doi:10.1016/j.chemosphere.2014.01.016

  20. Guengerich FP (2003) Cytochrome P450 oxidations in the generation of reactive electrophiles: epoxidation and related reactions. Arch Biochem Biophys 409:59–71. doi:10.1016/S0003-9861(02)00415-0

  21. Hezari M, Davis PJ (1992) Microbial models of mammalian metabolism. N-dealkylation of furosemide to yield the mammalian metabolite CSA using Cunninghamella elegans. Drug Metab Dispos 20:882–888

  22. Huschek G, Hansen PD, Maurer HH, Krengel D, Kayser A, European C (2004) Environmental risk assessment of medicinal products for human use according to European Commission recommendations. Environ Toxicol 19:226–240. doi:10.1002/tox.20015

  23. Isidori M, Nardelli A, Parrella A, Pascarella L, Previtera L (2006) A multispecies study to assess the toxic and genotoxic effect of pharmaceuticals: furosemide and its photoproduct. Chemosphere 63:785–793. doi:10.1016/j.chemosphere.2005.07.078

  24. Jakimska A, Sliwka-Kaszynska M, Reszczynska J, Namiesnik J, Kot-Wasik A (2014) Elucidation of transformation pathway of ketoprofen, ibuprofen, and furosemide in surface water and their occurrence in the aqueous environment using UHPLC-QTOF-MS. Anal Bioanal Chem 406:3667–3680. doi:10.1007/s00216-014-7614-1

  25. Khetan SK, Collins TJ (2007) Human pharmaceuticals in the aquatic environment: a challenge to green chemistry. Chem Rev 107:2319–2364. doi:10.1021/cr020441w

  26. Kuster A, Adler N (2014) Pharmaceuticals in the environment: scientific evidence of risks and its regulation. Philos Trans R Soc Lond Ser B Biol Sci 369. doi:10.1098/rstb.2013.0587

  27. Lacroix I, Biton J, Azerad R (1997) Microbial biotransformations of a synthetic immunomodulating agent, HR325. Bioorg Med Chem 5:1369–1380. doi:10.1016/S0968-0896(97)00094-1

  28. Laurencé C, Rivard M, Lachaise I, Bensemhoun J, Martens T (2011) Preparative access to transformation products (TPs) of furosemide: a versatile application of anodic oxidation. Tetrahedron 67:9518–9521. doi:10.1016/J.Tet.2011.10.006

  29. Laurencé C, Rivard M, Martens T, Morin C, Buisson D, Bourcier S, Sablier M, Oturan MA (2014) Anticipating the fate and impact of organic environmental contaminants: a new approach applied to the pharmaceutical furosemide. Chemosphere 113:193–199. doi:10.1016/J.Chemosphere.2014.05.036

  30. Li Z, Maier MP, Radke M (2014) Screening for pharmaceutical transformation products formed in river sediment by combining ultrahigh performance liquid chromatography/high resolution mass spectrometry with a rapid data-processing method. Anal Chim Acta 810:61–70. doi:10.1016/j.aca.2013.12.012

  31. Loos R, Carvalho R, Antonio DC, Comero S, Locoro G, Tavazzi S, Paracchini B, Ghiani M, Lettieri T, Blaha L, Jarosova B, Voorspoels S, Servaes K, Haglund P, Fick J, Lindberg RH, Schwesig D, Gawlik BM (2013) EU-wide monitoring survey on emerging polar organic contaminants in wastewater treatment plant effluents. Water Res 47:6475–6487. doi:10.1016/j.watres.2013.08.024

  32. Martens T, Rivard M, Laurence C, Morin C, Lehri-Boufala S (2014) Chemical model of a neurodegenerative disease, method for preparation and uses of same. WO 2014076439

  33. Marvalin C, Azerad R (2011) Microbial production of phase I and phase II metabolites of propranolol. Xenobiotica 41:175–186. doi:10.3109/00498254.2010.535219

  34. Mendoza A, Acena J, Perez S, Lopez de Alda M, Barcelo D, Gil A, Valcarcel Y (2015) Pharmaceuticals and iodinated contrast media in a hospital wastewater: a case study to analyse their presence and characterise their environmental risk and hazard. Environ Res 140:225–241. doi:10.1016/j.envres.2015.04.003

  35. Mondal SC, Tripathi DN, Vikram A, Ramarao P, Jena GB (2012) Furosemide-induced genotoxicity and cytotoxicity in the hepatocytes, but weak genotoxicity in the bone marrow cells of mice. Fundam Clin Pharmacol 26:383–392. doi:10.1111/j.1472-8206.2011.00927.x

  36. Morais SA, Delerue-Matos C, Gabarrell X (2014) An uncertainty and sensitivity analysis applied to the prioritisation of pharmaceuticals as surface water contaminants from wastewater treatment plant direct emissions. Sci Total Environ 490:342–350. doi:10.1016/j.scitotenv.2014.04.082

  37. Murphy CD (2016) Microbial degradation of fluorinated drugs: biochemical pathways, impacts on the environment and potential applications. Appl Microbiol Biotechnol 100:2617–2627. doi:10.1007/s00253-016-7304-3

  38. Oliveira TS, Murphy M, Mendola N, Wong V, Carlson D, Waring L (2015) Characterization of pharmaceuticals and personal care products in hospital effluent and waste water influent/effluent by direct-injection LC-MS-MS. Sci Total Environ 518-519:459–478. doi:10.1016/j.scitotenv.2015.02.104

  39. Olvera-Vargas H, Oturan N, Buisson D, van Hullebusch ED, Oturan MA (2015) Electro-oxidation of the pharmaceutical furosemide: kinetics, mechanism, and by-products. CLEAN – Soil, Air, Water 43:1455–1463. doi:10.1002/clen.201400656

  40. Papageorgiou M, Kosma C, Lambropoulou D (2016) Seasonal occurrence, removal, mass loading and environmental risk assessment of 55 pharmaceuticals and personal care products in a municipal wastewater treatment plant in Central Greece. Sci Total Environ 543:547–569. doi:10.1016/j.scitotenv.2015.11.047

  41. Parshikov IA, Woodling KA, Sutherland JB (2015) Biotransformations of organic compounds mediated by cultures of Aspergillus niger. Appl Microbiol Biotechnol 99:6971–6986. doi:10.1007/s00253-015-6765-0

  42. Pascoe D, Karntanut W, Muller CT (2003) Do pharmaceuticals affect freshwater invertebrates? A study with the cnidarian Hydra vulgaris. Chemosphere 51:521–528. doi:10.1016/S0045-6535(02)00860-3

  43. Peterson LA (2013) Reactive metabolites in the biotransformation of molecules containing a furan ring. Chem Res Toxicol 26:6–25. doi:10.1021/tx3003824

  44. Ribeiro AR, Nunes OC, Pereira MF, Silva AM (2015) An overview on the advanced oxidation processes applied for the treatment of water pollutants defined in the recently launched directive 2013/39/EU. Environ Int 75:33–51. doi:10.1016/j.envint.2014.10.027

  45. Williams DP, Antoine DJ, Butler PJ, Jones R, Randle L, Payne A, Howard M, Gardner I, Blagg J, Park BK (2007) The metabolism and toxicity of furosemide in the Wistar rat and CD-1 mouse: a chemical and biochemical definition of the toxicophore. J Pharmacol Exp Ther 322:1208–1220. doi:10.1124/Jpet.107.125302

Download references

Acknowledgments

The authors wish to thank S. Amand for technical assistance, L. Dubost for mass spectra and A. Deville for NMR spectra.

Author information

Correspondence to Didier Buisson.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Funding

This study was funded by the European Commission through the Erasmus Mundus Joint Doctorate Programme (Environmental Technologies for Contaminated Solids, Soils and Sediments) (grant number FPA n°2010–0009), and CONACyT, Mexico.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

ESM 1

(PDF 2243 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Olvera-Vargas, H., Leroy, S., Rivard, M. et al. Microbial biotransformation of furosemide for environmental risk assessment: identification of metabolites and toxicological evaluation. Environ Sci Pollut Res 23, 22691–22700 (2016). https://doi.org/10.1007/s11356-016-7398-2

Download citation

Keywords

  • Biodegradation
  • Oxidation
  • Degradation pathway
  • Environmental transformation products
  • Ecotoxicology