Environmental Science and Pollution Research

, Volume 23, Issue 21, pp 21766–21779 | Cite as

The patterns of bacterial community and relationships between sulfate-reducing bacteria and hydrochemistry in sulfate-polluted groundwater of Baogang rare earth tailings

  • Xinli An
  • Paul Baker
  • Hu Li
  • Jianqiang Su
  • Changping Yu
  • Chao Cai
Research Article


Microorganisms are the primary agents responsible for the modification, degradation, and/or detoxification of pollutants, and thus, they play a major role in their natural attenuation; yet, little is known about the structure and diversity of the subsurface community and relationships between microbial community and groundwater hydrochemistry. In this study, denaturing gradient gel electrophoresis (DGGE) and terminal restriction fragment length polymorphism (T-RFLP) allowed a comparative microbial community analysis of sulfate-contaminated groundwater samples from nine different wells in the region of Baogang rare earth tailings. Using real-time PCR, the abundance of total bacteria and the sulfate-reducing genes of aprA and dsrB were quantified. Statistical analyses showed a clear distinction of the microbial community diversity between the contaminated and uncontaminated samples, with Proteobacteria being the most dominant members of the microbial community. SO4 2− concentrations exerted a significant effect on the variation of the bacterial community (P < 0.05), with higher concentrations of sulfate reducing the microbial diversity (H′ index), indicating that human activity (e.g., mining industries) was a possible factor disturbing the structure of the bacterial community. Quantitative analysis of the functional genes showed that the proportions of dsrB to total bacteria were 0.002–2.85 %, and the sulfate-reducing bacteria (SRB) were predominant within the prokaryotic community in the groundwater. The uncontaminated groundwater with low sulfate concentration harbored higher abundance of SRB than that in the polluted samples, while no significant correlation was observed between sulfate concentrations and SRB abundances in this study, suggesting other environmental factors possibly contributed to different distributions and abundances of SRB in the different sites. The results should facilitate expanded studies to identify robust microbe-environment interactions and provide a strong foundation for qualitative exploration of the bacterial diversity in rare earth tailings groundwater that might ultimately be incorporated into the remediation of environmental contamination.


Groundwater Microbial community Sulfate-reducing bacteria (SRB) DGGE T-RFLP Real-time PCR Rare earth tailings 



This work was supported by the Special Fund for Public Welfare Industry of National Environmental Protection (201309005) and National High-Tech R&D Program of China (863 Program 2013AA06A211).

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflicts of interest.

Supplementary material

11356_2016_7381_MOESM1_ESM.docx (161 kb)
ESM 1 (DOCX 160 kb)


  1. Abdo Z, Schüette UME, Bent SJ, Williams CJ, Forney LJ, Joyce P (2005) Statistical methods for characterizing diversity of microbial communities by analysis of terminal restriction fragment length polymorphisms of 16S rRNA. Environ Microbiol 8(5):929–938. doi: 10.1111/j.1462-2920.2005.00959.x CrossRefGoogle Scholar
  2. Axel S, Lev NN (2006) Quantification of microbial communities in near-surface and deeply buried marine sediments on the Peru continental margin using real-time PCR. Environ Microbiol 8(7):1251–1260. doi: 10.1111/j.1462-2920.2006.01019.x CrossRefGoogle Scholar
  3. Blazejak A, Schippers A (2011) Real-time PCR quantification and diversity analysis of the functional genes aprA and dsrA of sulfate-reducing prokaryotes in marine sediments of the Peru continental margin and the Black Sea. Front Microbiol 2(253):1–11. doi: 10.3389/fmicb.2011.00253 Google Scholar
  4. Camarinha-Silva A, Wos-Oxley ML, Jáuregui R, Becker K, Pieper DH (2012) Validating T-RFLP as a sensitive and high-throughput approach to assess bacterial diversity patterns in human anterior nares. FEMS Microbiol Ecol 79:98–108. doi: 10.1111/j.1574-6941.2011.01197.x CrossRefGoogle Scholar
  5. Chang YJ, Peacock AD, Long PE, Stephen JR, Mckinley JP, Macnaughton SJ, Hussain AKMA, Saxton AM, White DC (2001) Diversity and characterization of sulfate-reducing bacteria in groundwater at a uranium mill tailings site. Appl Environ Microbiol 67(7):3149–3160. doi: 10.1128/AEM.67.7.3149-3160.2001 CrossRefGoogle Scholar
  6. Cho HB, Lee JK, Choi YK (2003) The genetic diversity analysis of the bacterial community in groundwater by denaturing gradient gel electrophoresis (DGGE). J Microbiol p:327–334Google Scholar
  7. Cindy JS, David B.N, Liang FD, Osborn AM (2006) Evaluation of quantitative polymerase chain reaction based approaches for determining gene copy and gene transcript numbers in environmental samples. Environ Microbiol 8(5): 804–815. doi:  10.1111/j.1462-2920.2005.00963.x
  8. Dar SA, Kuenen JG, Muyzer G (2005) Nested PCR-denaturation gradient gel electrophoresis approach to determine the diversity of sulfate-reducing bacteria in complex microbial communities. Appl Environ Microbiol 71:2325–2330. doi: 10.1128/AEM.71.5.2325-2330.2005 CrossRefGoogle Scholar
  9. De Vet WWJM, Dinkla IJT, Muyzer G, Rietveld LC, van Loosdrecht MCM (2009) Molecular characterization of microbial populations in groundwater sources and sand filters for drinking water production. Water Res 43(1):182–194. doi: 10.1016/j.watres.2008.09.038 CrossRefGoogle Scholar
  10. Evvie C, Subramanian S (2009) Utility of Eucalyptus tereticornis (Smith) bark and Desulfotomaculum nigrificans for the remediation of acid mine drainage. Bioresource Technol 100(2):615–621. doi: 10.1016/j.biortech.2008.07.004
  11. Fahy A, Lethbridge G, Earle R, Ball AS, Timmis KN, McGenity TJ (2005) Effects of long-term benzene pollution on bacterial diversity and community structure in groundwater. Environ Microbiol 7(8):1192–1199. doi: 10.1111/j.1462-2920.2005.00799.x CrossRefGoogle Scholar
  12. Feifei M, Wantong S, Jumei L, Jianying W, Xuefeng Z, Lu C (2012) Study on oxidative damage and DNA damage in Misgurnus anguillicaudatus caused by the tailing lake seepage. Guangdong Agri Sci 16:162–164 in ChineseGoogle Scholar
  13. Flynn TM, Sanford RA, Ryu H, Bethke CM, Levine AD, Ashbolt NJ, Domingo JWS (2013) Functional microbial diversity explains groundwater chemistry in a pristine aquifer. BMC Microbiol 13:146. doi: 10.1186/1471-2180-13-146 CrossRefGoogle Scholar
  14. Garrity, George M.; Brenner, Don J.; Krieg, Noel R.; Staley, James T. (eds.) (2005). Bergey's manual of systematic bacteriology, volume two: the Proteobacteria, part C: the Alpha-, Beta-, Delta-, and Epsilonproteobacteria. New York, New York: Springer. ISBN 978–0–387-24145-6Google Scholar
  15. Geets J, Borremans B, Diels L, Springael D, Vangronsveld J, van der Lelie D, Vanbroekhoven K (2006) DsrB gene-based DGGE for community and diversity surveys of sulfate-reducing bacteria. J Microbiol Meth 66:194–205. doi: 10.1016/j.mimet.2005.11.002 CrossRefGoogle Scholar
  16. Gorra R, Webster G, Martin M, Celi L, Mapelli F, Weightman AJ (2012) Dynamic microbial community associated with iron-arsenic co-precipitation products from a groundwater storage system in Bangladesh. FEMS Microbiol Ecol 64(1):171–186. doi: 10.1007/s00248-012-0014-1 CrossRefGoogle Scholar
  17. Grebler C, Lueders T (2009) Microbial biodiversity in groundwater ecosystems. Fresh Biol 54:649–677. doi: 10.1111/j.1365-2427.2008.02013.x CrossRefGoogle Scholar
  18. Hines ME, Banta GT, Giblin AE, Hobbie JE, Tugel JB (1994) Acetate concentration and oxidation in salt marsh sediments. Limnol Oceanogr 39:140–148. doi: 10.4319/lo.1994.39.1.0140 CrossRefGoogle Scholar
  19. Hoshino T, Terahara T, Tsuneda S, Hirata A, Inamori Y (2005) Molecular analysis of microbial population transition associated with the start of denitrification in a wastewater treatment process. J Appl Microbiol 99:1165–1175. doi: 10.1111/j.1365-2672.2005.02698.x CrossRefGoogle Scholar
  20. Hügler M, Gärtner A, Imhoff JF (2010) Functional genes as markers for sulfur cycling and CO2 fixation in microbial communities of hydrothermal vents of the Logatchev field. FEMS Microbiol Ecol 73(3):526–537. doi: 10.1111/j.1574-6941.2010.00919.x Google Scholar
  21. Inagaki F, Nunoura T, Nakagawa S, Teske A, Lever M, Lauer A, Suzuki M, Takai K, Delwiche M, Colwell FS, Nealson KH, Horikoshi K, D’Hondt S, Jørgensen BB (2006) Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean margin. Proc Natl Acad Sci 103:2815–2820. doi: 10.1073/pnas.0511033103 CrossRefGoogle Scholar
  22. Johnson DB, Hallberg KB (2003) The microbiology of acidic mine waters. Res Microb 154(7):466–473. doi: 10.1016/S0923-2508(03)00114-1 CrossRefGoogle Scholar
  23. Julie L, Laurent Q, Thierry B, Fabienne P (2005) Diversity of the dsrAB (dissimilatory sulfite reductase) gene sequences retrieved from two contrasting mudflats of the Seine estuary, France. FEMS Microbiol Ecol 55:230–238. doi: 10.1111/j.1574.6941.2005.00021.x Google Scholar
  24. Kan JB, Li LN, Qu D, Wang BL (2014) Changes in bacterial abundance and community structure associated with flooding in paddy soil. Biodiversity Sci 22(4):508–515 in ChineseCrossRefGoogle Scholar
  25. Kjeldsen P, Barlaz MA, Rooker AP, Baun A, Ledin A, Christensen TH (2002) Present and long-term composition of MSW landfill leachate: a review. Crit Rev Environ Sci Technol 32(4):297–336. doi: 10.1080/10643380290813462 CrossRefGoogle Scholar
  26. Kleikemper J, Schroth MH, Sigler WV, Schmucki M, Bernasconi SM, Zeyer J (2002) Activity and diversity of sulfate-reducing bacteria in a petroleum hydrocarbon-contaminated aquifer. Appl Environ Microbiol 68(4):1516–1523. doi: 10.1128/AEM.68.4.1516-1523.2002 CrossRefGoogle Scholar
  27. Klein M, Friedrich M, Roger AJ, Hugenholtz P, Fishbain S, Abicht H, Blackall LL, Stahl DA, Wagner M (2001) Multiple lateral transfers of dissimilatory sulfite reductase genes between major lineages of sulfate reducing prokaryotes. Appl Environ Microbiol 67:6028–6035. doi: 10.1128/JB.183.20.6028-6035.2001 Google Scholar
  28. Lear G, Song B, Gault AG, Polya DA, Lloyd JR (2007) Molecular analysis of arsenate-reducing bacteria within Cambodian sediments following amendment with acetate. Appl Environ Microbiol 73:1041–1048. doi: 10.1128/AEM.01654-06 CrossRefGoogle Scholar
  29. Leloup J, Loy A, Knab NJ, Borowski C, Wagner M, Jorgensen BB (2007) Diversity and abundance of sulfate-reducing microorganisms in the sulfate and methane zones of a marine sediment, Black Sea. Environ Microbiol 9:131–142. doi: 10.1111/j.1462-2920.2006.01122.x CrossRefGoogle Scholar
  30. Li JT, Ji SL, Liu ZP, Qin ZP, Liu Y, Yang YY (2009) Analysis of bacterial composition of aerobic granular sludge with 16S rDNA clone library. Res Environ Sci 10:1218–1223 in ChineseGoogle Scholar
  31. Liu XZ, Zhang LM, Prosser JI, He JZ (2009) Abundance and community structure of sulfate reducing prokaryotes in a paddy soil of southern China under different fertilization regimes. Soil Biol Biochem 41:687–694. doi: 10.1016/j.soilbio.2009.01.001 CrossRefGoogle Scholar
  32. Ludvigsen L, Albrechtsen HJ, Ringelberg DB, Ekelund F, Christensen TH (1999) Distribution and composition of microbial populations in landfill leachate contaminated aquifer (Grindsted, Denmark). Microb Ecol 37(3):197–207. doi: 10.1007/s002489900143 CrossRefGoogle Scholar
  33. Luton PE, Wayne JM, Sharp RJ, Riley PW (2002) The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiol-Sgm 148:3521–3530. doi: 10.1099/00221287-148-11-3521 CrossRefGoogle Scholar
  34. Mechichi T, Stackebrandt E, Fuchs G (2003) Alicycliphilus denitrificans gen. nov., sp. nov., a cyclohexanol-degrading, nitrate reducing β-proteobacterium. Int J Syst Evol Microbiol 53:147–152. doi: 10.1099/ijs.0.02276-0 CrossRefGoogle Scholar
  35. Meyer B, Kuever J (2007a) Phylogeny of the alpha and beta subunits of the dissimilatory adenosine-5′-phosphosulfate (APS) reductase from sulfate-reducing prokaryotes—origin and evolution of the dissimilatory sulfate-reduction pathway. Microbiol 153:2026–2044. doi: 10.1099/mic.0.2006/003152-0 CrossRefGoogle Scholar
  36. Meyer B, Kuever J (2007b) Molecular analysis of the distribution and phylogeny of dissimilatory adenosine-5′-phosphosulfate reductase-encoding genes (aprBA) among sulfur-oxidizing prokaryotes. Microbiol 153:3478–3498. doi: 10.1099/mic.0.2007/008250-0 CrossRefGoogle Scholar
  37. Mouser PJ, Rizzo DM, Druschel GK, Morales SE, Hayden N, O’Grady P, Stevens L (2010) Enhanced detection of groundwater contamination from a leaking waste disposal site by microbial community profiles. Water Resour Res 46(W12506):1–12. doi: 10.1029/2010WR009459 Google Scholar
  38. Oscar L, David S, Michael B, David K (2009) Green technologies for sulphate and metal removal in mining and metallurgical effluents. Enviromine Conference Santiago, ChileGoogle Scholar
  39. Pester M, Knorr KH, Friedrich MW, Wagner M, Loy A (2012) Sulfate-reducing microorganisms in wetlands—fameless actor s in carbon cycling and climate change. Front Microbiol 3:1–19. doi: 10.3389/fmicb.2012.0 0 072 CrossRefGoogle Scholar
  40. Purdy KJ, Embley TM, Nedwell DB (2002) The distribution and activity of sulphate reducing bacteria in estuarine and coastal marine sediments. Antonie Van Leeuwenhoek 81:181–187. doi: 10.1023/A:1020550215012 CrossRefGoogle Scholar
  41. Riedinger N, Brunner B, Formolo MJ, Solomon E, Kasten S, Strasser M, Ferdelman TG (2010) Oxidative sulfur cycling in the deep biosphere of the Nankai trough Japan. Geol 38:851–854. doi: 10.1130/G31085.1 CrossRefGoogle Scholar
  42. Roling WFM, VAN Breukelen BM, Braster M, Lin B, VAN Verseveld HW (2001) Relationships between microbial community structure and hydrochemistry in a landfill leachate-polluted aquifer. Appl Environ Microb 67(10):4619–4629. doi: 10.1128/AEM.67.10.4619-4629.2001 CrossRefGoogle Scholar
  43. Schippers A, Neretin LN, Kallmeyer J, Ferdelman TG, Cragg BA, Parkes RJ, Jørgensen BB (2005) Prokaryotic cells of the deep sub-seafloor biosphere identified as living bacteria. Nature 433:861–864. doi: 10.1038/nature03302 CrossRefGoogle Scholar
  44. Sirisena KA, Daughney CJ, Fournier MM, Ryan KG, Chambers GK (2014) National survey of molecular bacterial diversity of New Zealand groundwater: relationships between biodiversity, groundwater chemistry and aquifer characteristics. FEMS Microbiol Ecol 86:490–504. doi: 10.1111/1574-6941.12176 CrossRefGoogle Scholar
  45. Steve HHJ, Jonathan DI, Joseph MS (2004) Changes in organic matter biodegradability influencing sulfate reduction in an aquifer contaminated by landfill leachate. Microb Ecol 51(4):535–642. doi: 10.1007/s00248-006-9043-y Google Scholar
  46. Stubner S (2004) Quantification of gram-negative sulphate-reducing bacteria in rice field soil by 16S rRNA gene-targeted real-time PCR. J Microbiol Meth 57:219–230. doi: 10.1016/j.mimet.2004.01.008 CrossRefGoogle Scholar
  47. Sutton NB, van der Kraan GM, van Loosdrecht MCM, Muyzer G, Bruining J, Schotting RJ (2009) Characterization of geochemical constituents and bacterial populations associated with as mobilization in deep and shallow tube wells in Bangladesh. Water Res 43:1720–1730. doi: 10.1016/j.watres.2009.01.006 CrossRefGoogle Scholar
  48. Takai K, Suzuki M, Nakagawa S, Miyazaki M, Suzuki Y, Inagaki F, Horikoshi K (2006) Sulfurimonas paralvinellae sp. nov., a novel mesophilic, hydrogen- and sulfur-oxidizing Chemolithoautotroph within the Epsilonproteobacteria isolated from a deep-sea hydrothermal vent polychaete nest. Int J Syst Evol Microbiol 56(Pt 8):1725–1733. doi: 10.1099/ijs.0.64255-0 CrossRefGoogle Scholar
  49. Torrentó C, Urmeneta J, Otero N, Soler A, Viñas M, Cama J (2011) Enhanced denitrification in groundwater and sediments from a nitrate-contaminated aquifer after addition of pyrite. Chem Geol 287(1):90–101. doi: 10.1016/j.chemgeo.2011.06.002 CrossRefGoogle Scholar
  50. Vanni Pilloni G, Granitsiotis MS, Enge M, Lueders T (2012) Testing the limits of 454 Pyrotag sequencing: reproducibility, quantitative assessment and comparison to T-RFLP fingerprinting of aquifer microbes. PLoSOne 7(7):e40467. doi: 10.1371/journal.pone.0040467 CrossRefGoogle Scholar
  51. Wang XY, Li M, Xu YH, Liu LS, Liu ZG, Xiong XB (2010) Study on decomposition mechanism of rare earth concentrate by concentrated sulfuric acid. Hydrometallurgy of China 25(3):134–137 in ChineseGoogle Scholar
  52. Wantong S, Juan L, Shaozhuo W, Feifei M, Liping H, Xuefeng Z (2014) Toxic effects of exposure to seepage water of tailings on maize seed. Seed 12(33): 19–22 (in Chinese)Google Scholar
  53. Wilfred FMR, Boris MVB, Martin B, Bin L, Henk WVV (2001) Relationships between microbial community structure and hydrochemistry in a landfill leachate-polluted aquifer. Appl Environ Microbiol 67(10):4619–4629. doi: 10.1128/AEM.67.10.4619-4629.2001 CrossRefGoogle Scholar
  54. Xiujuan W, Jianliang P, Xianglong L, Jing T, Daotang L, Hong Y (2009) Sulfate-reducing bacteria in leachate-polluted aquifers along the shore of the East China Sea. Can J Microbiol 55:818–828. doi: 10.1139/W09-037 CrossRefGoogle Scholar
  55. Yeung CW, Stempvoort DRV, Spoelstra J, Bickerton G, Voralek J, Greer CW (2013) Bacterial community evidence for anaerobic degradation of petroleum hydrocarbons in cold climate groundwater. Cold Reg Sci Technol:55–68. doi: 10.1016/j.coldregions.2012.10.013
  56. Zhao M, Xie LA, Hu ZB (2013) Study on industrialization of roasting mixed rare earth concentrate with concentrated sulfuric acid at low temperature. Sci Technol Baotou Steel 39(3):47–49 in ChineseGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Xinli An
    • 1
    • 2
  • Paul Baker
    • 3
  • Hu Li
    • 1
    • 2
  • Jianqiang Su
    • 1
  • Changping Yu
    • 1
  • Chao Cai
    • 1
  1. 1.Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Bangor UniversityBangorUK

Personalised recommendations