Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Sorption of zinc onto elemental selenium nanoparticles immobilized in Phanerochaete chrysosporium pellets

Abstract

The use of a novel hybrid biosorbent, elemental selenium nanoparticles (nSe0) immobilized in pellets of Phanerochaete chrysosporium, to remove Zn from aqueous solutions was investigated. Fungal pellets containing nSe0 (nSe0-pellets) showed to be better biosorbents as they removed more Zn (88.1 ± 5.3 %) compared to Se-free fungal pellets (56.2 ± 2.8 %) at pH 4.5 and an initial Zn concentration of 10 mg L−1. The enhanced sorption capacity of nSe0-pellets was attributed to a higher concentration of sorption sites resulting in a more negative surface charge density, as determined by analysis of the potentiometric titration data. Fourier transform infrared spectroscopy (FT-IR) analysis of fungal pellets prior to and after being loaded with Zn showed the functional groups, including hydroxyl and carboxyl groups, involved in the sorption process. The experimental data indicated that the sorption rate of the nSe0-pellets fitted well to the pseudo-second order kinetic model (R 2 = 0.99), and the sorption isotherm was best represented by the Sips model (Langmuir-Freundlich) with heterogeneous factor n = 1 (R 2 = 0.99), which is equivalent to the Langmuir model. Operational advantages of fungal pelleted reactors and the Zn removal efficiencies achieved by nSe0-pellets under mild acidic conditions make nSe0-pellet based bioreactors an efficient biosorption process.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Ahmad MF, Haydar S, Quraishi TA (2013) Enhancement of biosroption of zinc ions from aqueous solution by immobilized Candida utilis and Candida tropicalis cells. Int Biodeter Biodegr 83:119–128. doi:10.1016/j.ibiod.2013.04.016

  2. Akar T, Tunali S, Cabuk A (2007) Study on the characterization of lead (II) biosorption by fungus Aspergillus parasiticus. Appl Biochem Biotechnol 136:389–405. doi:10.1007/s12010-007-9032-8

  3. Arıca MY, Arpa C, Ergene A, Bayramoğlu G, Genç Ö (2003) Ca-alginate as a support for Pb (II) and Zn (II) biosorption with immobilized Phanerochaete chrysosporium. Carbohydr Polym 52:167–174. doi:10.1016/S0144-8617(02)00307-7

  4. Arica MY, Bayramoğlua G (2007) Biosorption of reactive red-120 dye from aqueous solution by native and modified fungus biomass preparations of Lentinus sajor-caju. J Hazard Mater 149:499–507. doi:10.1016/j.jhazmat.2007.04.021

  5. Bai RS, Abraham TE (2002) Studies on enhancement of Cr (VI) biosorption by chemically modified biomass of Rhizopus nigricans. Water Res 36:1224–1236. doi:10.1016/S0043-1354(01)00330-X

  6. Bayramoğlu G, Arıca MY (2008) Removal of heavy mercury(II), cadmium(II) and zinc(II) metal ions by live and heat inactivated Lentinus edodes pellets. Chem Eng J 143:133–140. doi:10.1016/j.cej.2008.01.002

  7. Bayramoǧlu G, Bektaş S, Arica MY (2003) Biosorption of heavy metal ions on immobilized white-rot fungus Trametes versicolor. J Hazard Mater 101:285–300. doi:10.1016/S0304-3894(03)00178-X

  8. Bolster CH, Hornberger GM (2007) On the use of linearized Langmuir equations. Nutr Manag Soil Plant Anal 71:1796–1806. doi:10.2136/sssaj2006.0304

  9. Braissant O, Decho AW, Dupraz C, Glunk C, Przekop KM, Visscher PT (2007) Exopolymeric substances of sulfate-reducing bacteria: interactions with calcium at alkaline pH and implication for formation of carbonate minerals. Geobiology 5:401–411. doi:10.1111/j.1472-4669.2007.00117.x

  10. Chen XC, Wang YP, Lin Q, Shi JY, Chen YX (2005) Biosorption of copper(II) and zinc(II) from aqueous solution by Pseudomonas putida CZ1. Colloids Surf B: Biointerfaces 46:101–107. doi:10.1016/j.colsurfb.2005.10.003

  11. Deng S, Ting YP (2005) Characterization of PEI-modified biomass and biosorption of Cu(II), Pb(II) and Ni(II). Water Res 39:2167–2177. doi:10.1016/j.watres.2005.03.033

  12. Dong XQ, Yang JS, Zhu N, Wang ET, Yuan HL (2013) Sugarcane bagasse degradation and characterization of three white-rot fungi. Bioresour Technol 131:443–451. doi:10.1016/j.biortech.2012.12.182

  13. Espinosa-Ortiz EJ, Gonzalez-Gil G, Saikaly PE, van Hullebusch ED, Lens PNL (2015a) Effects of selenium oxyanions on the white-rot fungus Phanerochaete chrysosporium. Appl Microbiol Biotechnol 99:2405–2418. doi:10.1007/s00253-014-6127-3

  14. Espinosa-Ortiz EJ, Rene ER, van Hullebusch ED, Lens PNL (2015b) Removal of selenite from wastewater in a Phanerochaete chrysosporium pellet based fungal bioreactor. Int Biodeter Biodegr 102:361–369. doi:10.1016/j.ibiod.2015.04.014

  15. Espinosa-Ortiz EJ, Pechaud Y, Lauchnor E, Rene ER, Gerlach R, Peyton BM, van Hullebusch ED, Lens PNL (2016) Effect of selenite on the morphology and respiratory activity of Phanerochaete chrysosporium biofilms. Bioresour Technol 210:138–145. doi:10.1016/j.biortech.2016.02.074

  16. Filipović-Kovačević Z, Sipos L, Briški F (2010) Biosorption of chromium, copper, nickel, and zinc ions onto fungal pellets of Aspergillus niger 405 from aqueous solutions. Food Technol Biotechnol 38:211–216

  17. Fomina M, Gadd GM (2014) Biosorption: current perspectives on concept, definition and application. Bioresour Technol 160:3–14. doi:10.1016/j.biortech.2013.12.102

  18. Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156:2–10. doi:10.1016/j.cej.2009.09.013

  19. Ge F, Li MM, Ye H, Zhao BX (2012) Effective removal of heavy metal ions Cd2+, Zn2+, Pb2+, Cu2+ from aqueous solution by polymer-modified magnetic nanoparticles. J Hazard Mater 211–212:366–372. doi:10.1016/j.jhazmat.2011.12.013

  20. Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 35:451–465. doi:10.1016/S0032-9592(98)00112-5

  21. Hua M, Zhang S, Pan B, Zhang W, Lv L, Zhang Q (2012) Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J Hazard Mat 211-212:317–331. doi:10.1016/j.jhazmat.2011.10.016

  22. Jain R, Jordan N, Schild D, van Hullebusch ED, Weiss S, Franzen C, Farges F, Hübner R, Lens PNL (2015a) Adsorption of zinc by biogenic elemental selenium nanoparticles. Chem Eng J 260:855–863. doi:10.1016/j.cej.2014.09.057

  23. Jain R, Seder-Colomina M, Jordan N, Dessi P, Cosmidis J, van Hullebusch ED, Weiss S, Farges F, Lens PNL (2015b) Entrapped elemental selenium nanoparticles affect physicochemical properties of selenium fed activated sludge. J Hazard Mater 295:193–200. doi:10.1016/j.jhazmat.2015.03.043

  24. Jain R, Dominic D, Jordan N, Rene ER, Weiss S, van Hullebusch ED, Hübner R, Lens PNL (2016) Preferential adsorption of Cu in a multi-metal mixture onto biogenic elemental selenium nanoparticles. Chem Eng J 284:917–925. doi:10.1016/j.cej.2015.08.144

  25. Javaid A, Bajwa R, Shafique U, Anwar J (2011) Removal of heavy metals by adsorption on Pleurotus ostreatus. Biomass Bioenerg 35:1675–1682. doi:10.1016/j.biombioe.2010.12.035

  26. Kaçara Y, Arpab Ç, Tana S, Denizlib A, Gençb Ö, Arıca MY (2002) Biosorption of Hg(II) and Cd(II) from aqueous solutions: comparison of biosorptive capacity of alginate and immobilized live and heat inactivated Phanerochaete chrysosporium. Proc Biochem 37:601–610. doi:10.1016/S0032-9592(01)00248-5

  27. Kogej A, Pavko A (2001) Laboratory experiments of lead biosorption by self-immobilized Rhizopus nigricans pellets in the batch stirred tank reactor and the packed bed column. Chem Biochem Eng Q 15:75–79

  28. Kumar NS, Min K (2011) Phenolic compounds biosorption onto Schizophyllum commune fungus: FTIR analysis, kinetics and adsorption isotherms modeling. Chem Eng J 168:562–571. doi:10.1016/j.cej.2011.01.023

  29. Kumar KY, Muralidhara HB, Nayaka YA, Balasubramanyam J, Hanumanthappa H (2013) Low-cost synthesis of metal oxide nanoparticles and their application in adsorption of commercial dye and heavy metal ion in aqueous solution. Powder Technol 246:125–136. doi:10.1016/j.powtec.2013.05.017

  30. Kumar YP, King P, Prasad VSRK (2006) Comparison for adsorption modelling of copper and zinc from aqueous solution by Ulva fasciata sp. J Hazard Mater 137:1246–1251. doi:10.1016/j.jhazmat.2006.04.018

  31. Laurent J, Casellas M, Dagot C (2009) Heavy metals uptake by sonicated activated sludge: relation with floc surface properties. J Hazard Mater 162:652–660. doi:10.1016/j.jhazmat.2008.05.066

  32. Lecellier A, Mounier J, Gaydou V, Castrec L, Barbier G, Ablain W, Manfait M, Toubas D, Sockalingum GD (2014) Differentiation and identification of filamentous fungi by high-throughput FTIR spectroscopic analysis of mycelia. Int J Food Microbiol 168–169:32–41. doi:10.1016/j.ijfoodmicro.2013.10.011

  33. Lin J, Wang L (2009) Comparison between linear and non-linear forms of pseudo-first-order and pseudo-second-order adsorption kinetic models for the removal of methylene blue by activated carbon. Front Environ Sci Eng China 3:320–324. doi:10.1007/s11783-009-0030-7

  34. Luo HW, Chen JJ, Sheng GP, Su JH, Wei SQ, Yu HQ (2014) Experimental and theoretical approaches for the surface interaction between copper and activated sludge microorganisms at molecular scale. Sci Rep 4:7078. doi:10.1038/srep07078

  35. Mansoorian HJ, Mahvi AH, Jafari AJ (2014) Removal of lead and zinc from battery industry wastewater using electrocoagulation process: influence of direct and alternating current by using iron and stainless steel rod electrodes. Sep Purif Technol 135:165–175. doi:10.1016/j.seppur.2014.08.012

  36. Marandi R, Ardejani FD, Afshar HA (2010) Biosorption of lead (II) and zinc (II) ions by pre-treated biomass of Phanerochaete chrysosporium. Int J Mining Environ 1:8–16. doi:10.1080/13102818.2015.1036775

  37. Mohan D, Singh KP (2002) Single- and multi-component adsorption of cadmium and zinc using activated carbon derived from bagasse—an agricultural waste. Water Res Volume 36:2304–2318. doi:10.1016/S0043-1354(01)00447-X

  38. Naeem A, Woertz JR, Fein JB (2006) Experimental measurement of proton, Cd, Pb, Sr and Zn adsorption onto the fungal species Saccharomyces cerevisiae. Environ Sci Technol 40:5724–5729. doi:10.1021/es0606935

  39. Naja G, Mustin C, Volesky B, Berthelin J (2005) A high-resolution titrator: a new approach to studying binding sites of microbial biosorbents. Water Res 39:579–588. doi:10.1016/j.watres.2004.11.008

  40. Ngwenya N, Whiteley CG (2006) Recovery of rhodium (III) from solutions and industrial wastewaters by a sulfate-reducing bacteria consortium. Biotechnol Prog 22:1604–1611. doi:10.1002/bp060167h

  41. Pagnanelli F, Esposito A, Toro L, Vegliò F (2003) Metal speciation and pH effect on Pb, Cu, Zn and Cd biosorption onto Sphaerotilus natans: Langmuir-type empirical model. Water Res 37:627–633. doi:10.1016/S0043-1354(02)00358-5

  42. Park D, Yun YS, Park JM (2010) The past, present, and future trends of biosorption. Biotechnol Bioprocess Eng 15:86–102. doi:10.1007/s12257-009-0199-4

  43. Parvathi K, Nagendran R, Nareshkumar R (2007) Lead biosorption onto waste beer yeast by-product, a means to decontaminate effluent generated from battery manufacturing industry. Electron J Biotechnol 10(1). doi:10.2225/vol10-issue1-fulltext-13

  44. Tobin JM, White C, Gadd GM (1994) Metal accumulation by fungi: application in environmental biotechnology. J Ind Microbiol 13:126–130. doi:10.1007/BF01584110

  45. Turner BF, Fein JB (2006) Protofit: a program for determining surface protonation constants from titration data. Comput Geosciences 32:1344–1356. doi:10.1016/j.cageo.2005.12.005

  46. Tourney J, Ngwenya BT (2014) The role of bacterial extracellular polymeric substances in geomicrobiology. Chem Geol 386:115–132. doi:10.1016/j.chemgeo.2014.08.011

  47. Valix MR, Tang M, Malik R (2001) Heavy metal tolerance of fungi. Miner Eng 14:499–505. doi:10.1016/j.scient.2011.05.015

  48. Worch E (2012) Adsorption technology in water treatment. Fundamentals, processes and modeling. Walter de Gruyter GmbH & Co. KG, Berlin/Boston

  49. World Health Organization (2008) Guidelines for Drinking-Water Quality (3rd ed). Geneva

  50. Xu J, Zhang H, Zhang J, Kim EJ (2014) Capture of toxic radioactive and heavy metal ions from water by using titanate nanofibers. J Alloys Compd 614:389–393. doi:10.1016/j.jallcom.2014.06.128

  51. Xu P, Zeng GM, Huang DL, Lai C, Zhao MH, Wei Z, Li NJ, Huang C, Xie GX (2012) Adsorption of Pb(II) by iron oxide nanoparticles immobilized Phanerochaete chrysosporium: equilibrium, kinetic, thermodynamic and mechanisms analysis. Chem Eng J 203:423–431. doi:10.1016/j.cej.2012.07.048

  52. Xu CL, Wang YZ, Jin ML, Yang XQ (2009) Preparation, characterization and immunomodulatory activity of selenium-enriched exopolysaccharide produced by bacterium Enterobacter cloacae Z0206. Bioresour Technol 100:2095–2097. doi:10.1016/j.biortech.2008.10.037

  53. Zaidi A, Oves M, Ahmad E, Khan MS (2011) Importance of free-living fungi in heavy metal remediation. In: M.S. Khan, A. Zaidi, R. Goel, J. Musarrat (Eds.), Biomanagement of metal-contaminated soils, Environmental Pollution 20, Springer, p 479–495

Download references

Acknowledgments

The authors thank the financial support received through the Erasmus Mundus Joint Doctorate Programme ETeCoS3 (Environmental Technologies for Contaminated Solids, Soils and Sediments, grant agreement FPA no 2010-0009) and the Netherlands Fellowship Program (CF 8500/2012, NFP-MA 12/6303). The authors would like to thank Jean-Michel Riom (Université Paris-Est Marne-la-Vallée, France) for FT-IR technical support.

Author information

Correspondence to Erika J. Espinosa-Ortiz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

ESM 1

(DOCX 196 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Espinosa-Ortiz, E.J., Shakya, M., Jain, R. et al. Sorption of zinc onto elemental selenium nanoparticles immobilized in Phanerochaete chrysosporium pellets. Environ Sci Pollut Res 23, 21619–21630 (2016). https://doi.org/10.1007/s11356-016-7333-6

Download citation

Keywords

  • Zinc biosorption
  • Fungal pellets
  • Selenium nanoparticles
  • Phanerochaete chrysosporium
  • Hybrid biosorbent