Advertisement

Environmental Science and Pollution Research

, Volume 24, Issue 7, pp 6361–6371 | Cite as

Performance of ZnO synthesized by sol-gel as photocatalyst in the photooxidation reaction of NO

  • E. Luévano-Hipólito
  • A. Martínez-de la Cruz
  • E. López Cuéllar
AOPs: Recent Advances to Overcome Barriers in the Treatment of Water, Wastewater and Air

Abstract

ZnO samples were prepared by sol-gel method applying a factorial design in order to improve the photocatalytic properties of the semiconductor oxide in the NO photooxidation reaction. The concentrations of zinc acetate and ammonium hydroxide were selected as critical variables in the synthesis of ZnO. Nine samples of ZnO were obtained as product of the factorial design and were characterized by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, diffuse reflectance spectroscopy, and N2 adsorption-desorption isotherms. The photocatalytic activity of ZnO samples was associated with the physical properties developed by each sample according to its respective conditions of synthesis. Some photocatalytic reaction parameters, such as mass of photocatalyst, irradiance, and relative humidity, were modified in order to evaluate its effect in the photocatalytic conversion of NO. As a relevant point, the relative humidity played an important role in the increase of the selectivity of the NO photooxidation reaction to innocuous nitrate ions when ZnO was used as photocatalyst.

Keywords

ZnO Sol-gel Heterogeneous photocatalysis NOx 

Notes

Acknowledgments

We wish to thank the CONACYT for its invaluable support through the project 167018.

Supplementary material

11356_2016_7310_MOESM1_ESM.docx (40 kb)
Supplementary Figure S1 Lamp spectrum and absorbance of the ZnO samples prepared by the sol-gel method. (DOCX 39 kb)
11356_2016_7310_MOESM2_ESM.docx (61 kb)
Supplementary Figure S2 N2 adsorption–desorption isotherms of ZnO samples. (●) adsorption and (○) desorption. (DOCX 60 kb)

References

  1. Bacaksiz E, Parlak M, Tomakin M, Özcelik A, Karakiz M, Altunbas M (2009) The effects of zinc nitrate, zinc acetate and zinc chloride precursors on investigation of structural and optical properties of ZnO thin films. J Alloys Compd 466(1–2):447–450. doi: 10.1016/j.jallcom.2007.11.061 Google Scholar
  2. Baruah S, Dutta J (2009) Hydrothermal growth of ZnO nanostructures. Sci Tech Adv Mater 10:1–19. doi: 10.1088/1468-6996/10/1/013001 CrossRefGoogle Scholar
  3. Bloh JZ, Folli A, Macphee DE (2014) Photocatalytic NOx abatement: why the selectivity matters. RSC Adv 4:45726–45734. doi: 10.1039/c4ra07916g CrossRefGoogle Scholar
  4. Cademartiri L, Ozin GA (2010) Emerging strategies for the synthesis of highly monodisperse colloidal nanostructures. Phil Trans R Soc A 368:4229–4248. doi: 10.1098/rsta.2010.0126 CrossRefGoogle Scholar
  5. Condon JB (2006) Surface area and porosity determinations by physisorption. Elsevier, AmsterdamGoogle Scholar
  6. García Núñez C, Pau JL, Ruíz E, García Marín A, García BJ, Piqueras J, Shen G, Wilbert DS, Kim SM, Kung P (2014) Enhanced fabrication process of zinc oxide nanowires for optoelectronics. Thin Solid Films 555:42–47. doi: 10.1016/j.tsf.2013.12.011 CrossRefGoogle Scholar
  7. Hu G, Guo W, Yu R, Yang X, Zhou R, Pan C, Wang ZL (2016) Enhanced performances of flexible ZnO/perovskite solar cells by piezo-phototronic effect. Nano Energy 23:27–33. doi: 10.1016/j.nanoen.2016.02.057 CrossRefGoogle Scholar
  8. Huang Y, Guo C, Huang L, Dong Q, Yin S, Sato T (2013) Photocatalytic oxidation of NOx gases using ZnO with superstructure by a low temperature soft solution process. Int J Nanotechnol 10(1–2):30–37. doi: 10.1504/IJNT.2013.050878 CrossRefGoogle Scholar
  9. Kontopoulou I, Angelopoulou A, Bouropoulos N (2016) ZnO spherical porous nanostructures obtained by thermal decomposition of zinc palmitate. Mater Lett 165:87–90. doi: 10.1016/j.matlet.2015.11.110 CrossRefGoogle Scholar
  10. Kowsari E, Bazri B (2014) Synthesis of rose-like ZnO hierarchical nanostructures in the presence of ionic liquid/Mg2+ for air purification and their shape-dependent photodegradation of SO2, NOx, and CO. Appl Catal A 475:325–334. doi: 10.1016/j.apcata.2014.01.046 CrossRefGoogle Scholar
  11. Lasek J, Yu YH, Wu JCS (2013) Removal of NOx by photocatalytic processes. J Photochem Photobiol C: Photochem Rev 14:29–52. doi: 10.1016/j.jphotochemrev.2012.08.002 CrossRefGoogle Scholar
  12. Li GR, Pan GL, Yan TY, Gao XP, Zhu HY (2008) Morphology–function relationship of ZnO: polar planes, oxygen vacancies, and activity. J Phys Chem C 112(31):11859–11864. doi: 10.1021/jp8038626 CrossRefGoogle Scholar
  13. Luévano-Hipólito E, Martínez-de la Cruz A. (2016) Sol-gel synthesis and photocatalytic performance of ZnO toward oxidation reaction of NO. Res Chem Intermed 42:4879–4891. doi: 10.1007/s11164-015-2327-4
  14. Lyu J, Zhu L, Burda C (2014) Considerations to improve adsorption and photocatalysis of low concentration air pollutants on TiO2. Catal Today 225:24–33. doi: 10.1016/j.cattod.2013.10.089 CrossRefGoogle Scholar
  15. Moezzi A, McDonagh AM, Cortie MB (2014) Zinc oxide particles: synthesis, properties and applications. Chem Eng J 185-186:1–22. doi: 10.1016/j.cej.2012.01.076 CrossRefGoogle Scholar
  16. Nakata K, Fujishima A (2012) TiO2 photocatalysis: design and applications. J Photochem Photobiol C: Photochem Rev 13:169–189. doi: 10.1016/j.jphotochemrev.2012.06.001 CrossRefGoogle Scholar
  17. Pacholski C, Kornowski A, Weller H (2002) Self-assembly of ZnO: from nanodots to nanorods. Angew Chem Int Ed 41(7):1188–1191. doi: 10.1002/1521-3773(20020402)41:7<1188::AID-ANIE1188>3.0.CO;2-5 CrossRefGoogle Scholar
  18. Pei CC, Leung WW (2014) Solar photocatalytic oxidation of NO by electronspun TiO2/ZnO composite nanofiber mat for enhancing indoor air quality. J Chem Technol Biotechnol 89(11):1646–1652. doi: 10.1002/jctb.4506 CrossRefGoogle Scholar
  19. Peng X, Wickham J, Alivisatos AP (1998) Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth: “focusing” of size distributions. J Am Chem Soc 120(21):5343–5344. doi: 10.1021/ja9805425 CrossRefGoogle Scholar
  20. Radzimska AK, Jesionowsky T (2014) Zinc oxide-from synthesis to application: a review. Materials 7:2833–2881. doi: 10.3390/ma7042833 CrossRefGoogle Scholar
  21. Sun R, Nakajima A, Fijishima A, Watanabe T, Hashimoto K (2001) Photoinduced surface wettability conversion of ZnO and TiO2 thin films. J Phys Chem B 105(10):1984–1990. doi: 10.1021/jp002525j CrossRefGoogle Scholar
  22. Takeuchi M, Sakai S, Ebrahimi A, Matsuoka M, Anpo M (2009) Application of highly functional Ti-oxide-based photocatalysts in clean technologies. Top Catal 52:1651–1659. doi: 10.1007/s11244-009-9300-7 CrossRefGoogle Scholar
  23. Toma FL, Bertrand G, Klein D, Coddet C (2004) Photocatalytic removal of nitrogen oxides via titanium dioxide. Environ Chem Lett 2:117–121. doi: 10.1007/s10311-004-0087-2 CrossRefGoogle Scholar
  24. Verbruggen SW (2015) TiO2 photocatalysis for the degradation of pollutants in gas phase: from morphological design to plasmonic enhancement. J Photochem Photobiol C: Photochem Rev 24:64–82. doi: 10.1016/j.jphotochemrev.2015.07.001 CrossRefGoogle Scholar
  25. Wei Y, Huang Y, Wu J, Wang M, Guo C, Dong Q, Yin S, Sato T (2013) Synthesis of hierarchically structured ZnO spheres by facile methods and their photocatalytic deNOx properties. J Hazard Mater 248-249:202–210. doi: 10.1016/j.jhazmat.2013.01.012 CrossRefGoogle Scholar
  26. Zhang M, Jin F, Zhen M, Liu J, Zhao Z, Duan X (2014) High efficiency solar cell based on ZnO nanowire array prepared by different growth methods. RCS Adv 4:10462–10466. doi: 10.1039/C3RA47146B Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • E. Luévano-Hipólito
    • 1
  • A. Martínez-de la Cruz
    • 1
  • E. López Cuéllar
    • 1
  1. 1.CIIDIT, Facultad de Ingeniería Mecánica y EléctricaUniversidad Autónoma de Nuevo León, Ciudad UniversitariaSan Nicolás de los GarzaMexico

Personalised recommendations