Advertisement

Environmental Science and Pollution Research

, Volume 23, Issue 21, pp 22136–22150 | Cite as

Response of three biofilm-forming benthic microorganisms to Ag nanoparticles and Ag+: the diatom Nitzschia palea, the green alga Uronema confervicolum and the cyanobacteria Leptolyngbya sp.

  • A. G. González
  • L. Fernández-Rojo
  • J. Leflaive
  • O. S. Pokrovsky
  • J-L. Rols
Research Article

Abstract

Although the industrial use of nanoparticles has increased over the past decade, the knowledge about their interaction with benthic phototrophic microorganisms in the environment is still limited. This study aims to characterize the toxic effect of ionic Ag+ and Ag nanoparticles (citrate-coated silver nanoparticles, AgNPs) in a wide concentration range (from 1 to 1000 μg L−1) and duration of exposure (2, 5 and 14 days) on three biofilm-forming benthic microorganisms: diatom Nitzschia palea, green algae Uronema confervicolum and cyanobacteria Leptolyngbya sp. Ag+ has a significant effect on the growth of all three species at low concentrations (1–10 μg L−1), whereas the inhibitory effect of AgNPs was only observed at 1000 μg L−1 and solely after 2 days of exposure. The inhibitory effect of both Ag+ and AgNPs decreased in the course of the experiments from 2 to 14 days, which can be explained by the progressive excretion of the exopolysaccharides and dissolved organic carbon by the microorganisms, thus allowing them to alleviate the toxic effects of aqueous silver. The lower impact of AgNPs on cells compared to Ag+ can be explained in terms of availability, internalization, reactive oxygen species production, dissolved silver concentration and agglomeration of AgNPs. The duration of exposure to Ag+ and AgNPs stress is a fundamental parameter controlling the bioaccumulation and detoxification in benthic phototrophic microorganisms.

Keywords

AgNPs Ionic silver Growth inhibition Biosorption Complexation Biofilm 

Notes

Acknowledgments

This research was supported by the Midi-Pyrénées Regional Council (France) within the programme Gagilau (No. DAER-R93 90173). Partial support from BIO-GEO-CLIM grant No. 14.B25.31.0001 and ANR CITTOXIC-Nano are also acknowledged. Finally, we thank Katrin Meier for the English revision of the manuscript.

Supplementary material

11356_2016_7259_MOESM1_ESM.doc (826 kb)
ESM 1 (DOC 826 kb)

References

  1. Albanese A, Tang PS, Chan WCW (2012) The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 14:1–16. doi: 10.1146/annurev-bioeng-071811-150124 CrossRefGoogle Scholar
  2. Angel BM, Batley GE, Jarolimek CV, Rogers NJ (2013) The impact of size on the fate and toxicity of nanoparticulate silver in aquatic systems. Chemosphere 93:359–365. doi: 10.1016/j.chemosphere.2013.04.096 CrossRefGoogle Scholar
  3. Arulvasu C, Jennifer SM, Prabhu D, Chandhirasekar D (2014) Toxicity effect of silver nanoparticles in brine shrimp Artemia. Sci World J 2014:10. doi: 10.1155/2014/256919 CrossRefGoogle Scholar
  4. Auffan M, Rose J, Wiesner MR, Bottero J-Y (2009) Chemical stability of metallic nanoparticles: a parameter controlling their potential cellular toxicity in vitro. Environ Pollut 157:1127–1133CrossRefGoogle Scholar
  5. Baker TJ, Tyler CR, Galloway TS (2014) Impacts of metal and metal oxide nanoparticles on marine organisms. Environ Pollut 186:257–271. doi: 10.1016/j.envpol.2013.11.014 CrossRefGoogle Scholar
  6. Barnett BP, Arepally A, Karmarkar PV, Qian D, Gilson WD, Walczak P, Howland V, Lawler L, Lauzon C, Kraitchman DL, Bulte JWM (2007) Magnetic resonance-guided, real-time targeted delivery and imaging of magnetocapsules immunoprotecting pancreatic islet cells. Nat Med 13:986–991. doi: 10.1038/nm1581 CrossRefGoogle Scholar
  7. Benn TM, Westerhoff P (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42:4133–4139CrossRefGoogle Scholar
  8. Blaser SA, Scheringer M, MacLeod M, Hungerbühler K (2008) Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano-functionalized plastics and textiles. Sci Total Environ 390:396–409CrossRefGoogle Scholar
  9. Capek I (2004) Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions. Adv Colloid Interf Sci 110:49–74CrossRefGoogle Scholar
  10. Choi O, Hu Z (2008) Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol 42:4583–4588CrossRefGoogle Scholar
  11. Cumberland SA, Lead JR (2009) Particle size distributions of silver nanoparticles at environmentally relevant conditions. J Chromatogr A 1216:9099–9105CrossRefGoogle Scholar
  12. Dobias J, Bernier-Latmani R (2013) Silver release from silver nanoparticles in natural waters. Environ Sci Technol 47:4140–4146. doi: 10.1021/es304023p CrossRefGoogle Scholar
  13. Egorova EM (2011) Interaction of silver nanoparticles with biological objects: antimicrobial properties and toxicity for the other living organisms. J Phys Conf Ser 291:012050CrossRefGoogle Scholar
  14. El Badawy AM, Silva RG, Morris B, Scheckel KG, Suidan MT, Tolaymat TM (2010) Surface charge-dependent toxicity of silver nanoparticles. Environ Sci Technol 45:283–287. doi: 10.1021/es1034188 CrossRefGoogle Scholar
  15. Fabrega J, Fawcett SR, Renshaw JC, Lead JR (2009) Silver nanoparticle impact on bacterial growth: effect of pH, concentration, and organic matter. Environ Sci Technol 43:7285–7290. doi: 10.1021/es803259g CrossRefGoogle Scholar
  16. Fabrega J, Luoma SN, Tyler CR, Galloway TS, Lead JR (2011a) Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int 37:517–531. doi: 10.1016/j.envint.2010.10.012 CrossRefGoogle Scholar
  17. Fabrega J, Zhang R, Renshaw JC, Liu W-T, Lead JR (2011b) Impact of silver nanoparticles on natural marine biofilm bacteria. Chemosphere 85:961–966. doi: 10.1016/j.chemosphere.2011.06.066 CrossRefGoogle Scholar
  18. Feng Q, Wu J, Chen G, Cui F, Kim T, Kim J (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52:662–668CrossRefGoogle Scholar
  19. Frattini A, Pellegri N, Nicastro D, Sanctis OD (2005) Effect of amine groups in the synthesis of Ag nanoparticles using aminosilanes. Mater Chem Phys 94:148–152. doi: 10.1016/j.matchemphys.2005.04.023 CrossRefGoogle Scholar
  20. Gélabert A, Pokrovsky OS, Schott J, Boudou A, Feurtet-Mazel A, Mielczarski J, Mielczarski E, Mesmer-Dudons N, Spalla O (2004) Study of diatoms/aqueous solution interface. I. Acid-base equilibria and spectroscopic observation of freshwater and marine species. Geochim Cosmochim Acta 68:4039–4058. doi: 10.1016/j.gca.2004.01.011 CrossRefGoogle Scholar
  21. Gil-Allué C, Schirmer K, Tlili A, Gessner MO, Behra R (2015) Silver nanoparticle effects on stream periphyton during short-term exposures. Environ Sci Technol 49:1165–1172CrossRefGoogle Scholar
  22. González A, Mombo S, Leflaive J, Lamy A, Pokrovsky O, Rols J-L (2015) Silver nanoparticles impact phototrophic biofilm communities to a considerably higher degree than ionic silver. Environ Sci Pollut Res 22:8412–8424. doi: 10.1007/s11356-014-3978-1 CrossRefGoogle Scholar
  23. González AG, Pokrovsky OS, Jiménez-Villacorta F, Shirokova LS, Santana-Casiano JM, González-Dávila M, Emnova EE (2014) Iron adsorption onto soil and aquatic bacteria: XAS structural study. Chem Geol 372:32–45. doi: 10.1016/j.chemgeo.2014.02.013 CrossRefGoogle Scholar
  24. González AG, Shirokova LS, Pokrovsky OS, Emnova EE, Martinez RE, Santana-Casiano JM, Gonzalez-Davila M, Pokrovski GS (2010) Adsorption of copper on Pseudomonas aureofaciens: protective role of surface exopolysaccharides. J Colloid Interface Sci 350:305–314CrossRefGoogle Scholar
  25. Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43:9216–9222. doi: 10.1021/es9015553 CrossRefGoogle Scholar
  26. Gubbins EJ, Batty LC, Lead JR (2011) Phytotoxicity of silver nanoparticles to Lemna minor L. Environ Pollut 159:1551–1559CrossRefGoogle Scholar
  27. Gustafsson JP (2012) Visual MINTEQ, ver. 3.0. Compiled in visual basic. NET 2005. KYH, Dept of Land and Water Resources Engineering, StockholmGoogle Scholar
  28. He D, Dorantes-Aranda JJ, Waite TD (2012) Silver nanoparticle—algae interactions: oxidative dissolution, reactive oxygen species generation and synergistic toxic effects. Environ Sci Technol 46:8731–8738. doi: 10.1021/es300588a CrossRefGoogle Scholar
  29. Huynh KA, Chen KL (2011) Aggregation kinetics of citrate and polyvinylpyrrolidone coated silver nanoparticles in monovalent and divalent electrolyte solutions. Environ Sci Technol 45:5564–5571CrossRefGoogle Scholar
  30. Ivask A, Kurvet I, Kasemets K, Blinova I, Aruoja V, Suppi S, Vija H, Käkinen A, Titma T, Heinlaan M, Visnapuu M, Koller D, Kisand V, Kahru A (2014) Size-dependent toxicity of silver nanoparticles to bacteria, yeast, algae, crustaceans and mammalian cells in vitro. PLoS One 9:e102108. doi: 10.1371/journal.pone.0102108 CrossRefGoogle Scholar
  31. Jiang J, Oberdörster G, Biswas P (2009) Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res 11:77–89CrossRefGoogle Scholar
  32. Kaegi R, Sinnet B, Zuleeg S, Hagendorfer H, Mueller E, Vonbank R, Boller M, Burkhardt M (2010) Release of silver nanoparticles from outdoor facades. Environ Pollut 158:2900–2905CrossRefGoogle Scholar
  33. Kalishwaralal K, BarathManiKanth S, Pandian SRK, Deepak V, Gurunathan S (2010) Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis. Colloids Surf B 79:340–344. doi: 10.1016/j.colsurfb.2010.04.014 CrossRefGoogle Scholar
  34. Kappler A, Newman DK (2004) Formation of Fe (III)-minerals by Fe (II)-oxidizing photoautotrophic bacteria. Geochim Cosmochim Acta 68:1217–1226CrossRefGoogle Scholar
  35. Kilham S, Kreeger D, Lynn S, Goulden C, Herrera L (1998) COMBO: a defined freshwater culture medium for algae and zooplankton. Hydrobiologia 377:147–159. doi: 10.1023/A:1003231628456 CrossRefGoogle Scholar
  36. Kittler S, Greulich C, Diendorf J, Köller M, Epple M (2010) Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions. Chem Mater 22:4548–4554. doi: 10.1021/cm100023p CrossRefGoogle Scholar
  37. Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin M, Lead JR (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27:1825–1851. doi: 10.1897/08-090.1 CrossRefGoogle Scholar
  38. Kroll A, Behra R, Kaegi R, Sigg L (2014) Extracellular polymeric substances (EPS) of freshwater biofilms stabilize and modify CeO2 and Ag nanoparticles. PLoS One 9:e110709CrossRefGoogle Scholar
  39. Kroll A, Matzke M, Rybicki M, Obert-Rauser P, Burkart C, Jurkschat K, Verweij R, Sgier L, Jungmann D, Backhaus T, Svendsen C (2016) Mixed messages from benthic microbial communities exposed to nanoparticulate and ionic silver: 3D structure picks up nano-specific effects, while EPS and traditional endpoints indicate a concentration-dependent impact of silver ions. Environ Sci Pollut Res 23:4218–4234. doi: 10.1007/s11356-015-4887-7 CrossRefGoogle Scholar
  40. Lee D-Y, Fortin C, Campbell PGC (2005) Contrasting effects of chloride on the toxicity of silver to two green algae, Pseudokirchneriella subcapitata and Chlamydomonas reinhardtii. Aquat Toxicol 75:127–135CrossRefGoogle Scholar
  41. Li X, Lenhart JJ (2012) Aggregation and dissolution of silver nanoparticles in natural surface water. Environ Sci Technol 46:5378–5386. doi: 10.1021/es204531y CrossRefGoogle Scholar
  42. Liu W, Wu Y, Wang C, Li HC, Wang T, Liao CY, Cui L, Zhou QF, Yan B, Jiang GB (2010) Impact of silver nanoparticles on human cells: effect of particle size. Nanotoxicology 4:319–330. doi: 10.3109/17435390.2010.483745 CrossRefGoogle Scholar
  43. Lodeiro P, Achterberg EP, Pampín J, Affatati A, El-Shahawi MS (2016) Silver nanoparticles coated with natural polysaccharides as models to study AgNP aggregation kinetics using UV-visible spectrophotometry upon discharge in complex environments. Sci Total Environ 539:7–16. doi: 10.1016/j.scitotenv.2015.08.115 CrossRefGoogle Scholar
  44. López A, Rico M, Santana-Casiano JM, González AG, González-Dávila M (2015) Phenolic profile of Dunaliella tertiolecta growing under high levels of copper and iron. Environ Sci Pollut Res 22:14820–14828CrossRefGoogle Scholar
  45. Luoma SN, Ho YB, Bryan GW (1995) Fate, bioavailability and toxicity of silver in estuarine environments. Mar Pollut Bull 31:44–54CrossRefGoogle Scholar
  46. Marambio-Jones C, Hoek EV (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12:1531–1551. doi: 10.1007/s11051-010-9900-y CrossRefGoogle Scholar
  47. Miao A-J, Luo Z, Chen C-S, Chin W-C, Santschi PH, Quigg A (2010) Intracellular uptake: a possible mechanism for silver engineered nanoparticle toxicity to a freshwater alga Ochromonas danica. PLoS One 5:e15196CrossRefGoogle Scholar
  48. Miao A-J, Schwehr KA, Xu C, Zhang S-J, Luo Z, Quigg A, Santschi PH (2009) The algal toxicity of silver engineered nanoparticles and detoxification by exopolymeric substances. Environ Pollut 157:3034–3041. doi: 10.1016/j.envpol.2009.05.047 CrossRefGoogle Scholar
  49. Miller LA, Bruland KW (1995) Organic speciation of silver in marine waters. Environ Sci Technol 29:2616–2621. doi: 10.1021/es00010a024 CrossRefGoogle Scholar
  50. Morel FMM, Kustka AB, Shaked Y (2008) The role of unchelated Fe in the iron nutrition of phytoplankton. Limnol Oceanogr 53:400–404CrossRefGoogle Scholar
  51. Moreno-Garrido I, Pérez S, Blasco J (2015) Toxicity of silver and gold nanoparticles on marine microalgae. Mar Environ Res 111:60–73CrossRefGoogle Scholar
  52. Mueller NC, Nowack B (2008) Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42:4447–4453CrossRefGoogle Scholar
  53. Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, Quigg A, Santschi PH, Sigg L (2008a) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17:372–386CrossRefGoogle Scholar
  54. Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, Sigg L, Behra R (2008b) Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol 42:8959–8964. doi: 10.1021/es801785m CrossRefGoogle Scholar
  55. Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627. doi: 10.1126/science.1114397 CrossRefGoogle Scholar
  56. Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73:1712–1720CrossRefGoogle Scholar
  57. Park E-J, Yi J, Kim Y, Choi K, Park K (2010) Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism. Toxicol in Vitro 24:872–878CrossRefGoogle Scholar
  58. Park J-W, Oh J-H, Kim W-K, Lee S-K (2014) Toxicity of citrate-coated silver nanoparticles differs according to method of suspension preparation. Bull Environ Contam Toxicol 93:53–59. doi: 10.1007/s00128-014-1296-4 CrossRefGoogle Scholar
  59. Pavasupree S, Ngamsinlapasathian S, Nakajima M, Suzuki Y, Yoshikawa S (2006) Synthesis, characterization, photocatalytic activity and dye-sensitized solar cell performance of nanorods/nanoparticles TiO2 with mesoporous structure. J Photochem Photobiol A 184:163–169CrossRefGoogle Scholar
  60. Perelaer J, Hendriks CE, de Laat AW, Schubert US (2009) One-step inkjet printing of conductive silver tracks on polymer substrates. Nanotechnology 20:165303CrossRefGoogle Scholar
  61. Piccapietra F, Sigg L, Behra R (2011) Colloidal stability of carbonate-coated silver nanoparticles in synthetic and natural freshwater. Environ Sci Technol 46:818–825CrossRefGoogle Scholar
  62. Pillai S, Behra R, Nestler H, Suter MJF, Sigg L, Schirmer K (2014) Linking toxicity and adaptive responses across the transcriptome, proteome, and phenotype of Chlamydomonas reinhardtii exposed to silver. Proc Natl Acad Sci 111:3490–3495CrossRefGoogle Scholar
  63. Ribeiro FV (2014) Processos extremos na constituição da cidade. da crise à emergência nos espaços mundializados 2014. 18:2 doi:10.11606/issn.2179–0892.geousp.2014.81105Google Scholar
  64. Rico M, López A, Santana-Casiano JM, González AG, González-Dávila M (2013) Variability of the phenolic profile in the diatom Phaeodactylum tricornutum growing under copper and iron stress. Limnol Oceanogr 58:144–152CrossRefGoogle Scholar
  65. Sikora FJ, Stevenson FJ (1988) Silver complexation by humic substances: conditional stability constants and nature of reactive sites. Geoderma 42:353–363. doi: 10.1016/0016-7061(88)90011-0 CrossRefGoogle Scholar
  66. Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria. J. Colloid Interface Sci 275:177–182. doi: 10.1016/j.jcis.2004.02.012 CrossRefGoogle Scholar
  67. Stanier R, Kunisawa R, Mandel M, Cohen-Bazire G (1971) Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol Rev 35:171Google Scholar
  68. Tedesco S, Doyle H, Blasco J, Redmond G, Sheehan D (2010) Oxidative stress and toxicity of gold nanoparticles in Mytilus edulis. Aquat Toxicol 100:178–186. doi: 10.1016/j.aquatox.2010.03.001 CrossRefGoogle Scholar
  69. Tolaymat TM, El Badawy AM, Genaidy A, Scheckel KG, Luxton TP, Suidan M (2010) An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: a systematic review and critical appraisal of peer-reviewed scientific papers. Sci Total Environ 408:999–1006CrossRefGoogle Scholar
  70. Tungittiplakorn W, Lion LW, Cohen C, Kim J-Y (2004) Engineered polymeric nanoparticles for soil remediation. Environ Sci Technol 38:1605–1610. doi: 10.1021/es0348997 CrossRefGoogle Scholar
  71. van Schaik JWJ (2008) Binding of metals to macromolecular organic acids in natural waters vol 2008.Google Scholar
  72. Wady AF, Machado AL, Foggi CC, Zamperini CA, Zucolotto V, Moffa EB, Vergani CE (2014) Effect of a silver nanoparticles solution on Staphylococcus aureus and Candida spp. J Nanomater 2014:128–128. doi: 10.1155/2014/545279 CrossRefGoogle Scholar
  73. Wei L, Thakkar M, Chen Y, Ntim SA, Mitra S, Zhang X (2010) Cytotoxicity effects of water dispersible oxidized multiwalled carbon nanotubes on marine alga, Dunaliella tertiolecta. Aquat Toxicol 100:194–201CrossRefGoogle Scholar
  74. Yin L, Cheng Y, Espinasse B, Colman BP, Auffan M, Wiesner M, Rose J, Liu J, Bernhardt ES (2011) More than the ions: the effects of silver nanoparticles on Lolium multiflorum. Environ Sci Technol 45:2360–2367. doi: 10.1021/es103995x CrossRefGoogle Scholar
  75. Zhang W, Yao Y, Li K, Huang Y, Chen Y (2011) Influence of dissolved oxygen on aggregation kinetics of citrate-coated silver nanoparticles. Environ Pollut 159:3757–3762CrossRefGoogle Scholar
  76. Zhang W-X (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5:323–332. doi: 10.1023/A:1025520116015 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • A. G. González
    • 1
    • 2
    • 3
  • L. Fernández-Rojo
    • 1
    • 2
    • 3
  • J. Leflaive
    • 1
    • 2
  • O. S. Pokrovsky
    • 3
    • 4
    • 5
  • J-L. Rols
    • 1
    • 2
  1. 1.Université de ToulouseUPS, INP; EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement)ToulouseFrance
  2. 2.CNRS; EcoLabToulouseFrance
  3. 3.GET (Géosciences Environnement Toulouse) UMR 5563 CNRSToulouseFrance
  4. 4.BIO-GEO-CLIM LaboratoryTomsk State UniversityTomskRussia
  5. 5.Institute of Ecological Problems of the NorthArkhangelskRussia

Personalised recommendations