Environmental Science and Pollution Research

, Volume 23, Issue 21, pp 22059–22071 | Cite as

The use of feather as an indicator for heavy metal contamination in house crow (Corvus splendens) in the Klang area, Selangor, Malaysia

  • Mohammed Janaydeh
  • Ahmad Ismail
  • Syaizwan Zahmir Zulkifli
  • Mohd Hair Bejo
  • Nor Azwady Abd. Aziz
  • Ayat Taneenah
Research Article


The Klang area of Peninsular Malaysia has experienced rapid industrial growth with intense activities, which can increase the concentration of pollutants in the environment that significantly impact on habitats and the human health. The purpose of this study was to determine the levels of selected heavy metals (Cu, Zn, Ni, Fe, and Pb) in the heart, lung, brain, liver, kidney, muscle tissues, and feathers of house crow, Corvus splendens, in Klang, Peninsular Malaysia. House crow samples were collected from the Klang area through the Department of Public Health at Majlis Perbandaran Klang. Quantitative determination of heavy metals was carried out using atomic absorption spectrophotometer (AAS). The result shows the presence of heavy metals in all biological samples of house crows. For heavy metals in all the house crow tissues analyzed, Fe concentrations were the highest, followed by those of Zn, Cu, Pb, and Ni. The feathers and kidney accumulated high concentrations of Pb, whereas the liver accumulated high concentrations of essential heavy metals (Fe > Zn > Cu > Ni). Significant variations were also detected in the concentrations of Pb among adult and juvenile and male and female bird samples. The results also revealed significant positive correlations between Pb metal concentration in the breast feathers and all internal organs. Accumulation of toxic heavy metals in feathers reflected storing and elimination processes, while the accumulation of toxic heavy metals in the kidney can be consequential to chronic exposure. The present study clearly shows the usefulness of house crow breast feather as a suitable indicator for heavy metal accumulation in the internal organs of house crows in the Klang area.


Heavy metals House crow Bioindicator Feather Bioaccumulation Klang area 



We thank the Department of Public Health at Majlis Perbandaran, Klang city for assisting in the collection of house crows. Also, we express our profound gratitude to the University Putra Malaysia (UPM) for supporting and financing this research.


  1. Abdullah M, Fasola M, Muhammad A, et al. (2015) Avian feathers as a non-destructive bio-monitoring tool of trace metals signatures: a case study from severely contaminated areas. Chemosphere 119:553–561CrossRefGoogle Scholar
  2. Adams M, Zhao F, McGrath S, et al. (2004) Predicting cadmium concentrations in wheat and barley grain using soil properties. J Environ Qual 33:532–541CrossRefGoogle Scholar
  3. Ali H, (2008) Behavior and ecology of the house crow (Corvus splendens) in Islamabad Rawalpindi and Adjoining area. PhD Thesis in Zoology, University of Agriculture Faisalabad, PakistanGoogle Scholar
  4. Alina M, Azrina A, Mohd Yunus A, et al. (2012) Heavy metals (mercury, arsenic, cadmium, plumbum) in selected marine fish and shellfish along the straits of Malacca. Int Food Res J 19(1):135–140Google Scholar
  5. Alleva E, Francia N, Pandolfi M, et al. (2006) Organochlorine and heavy-metal contaminants in wild mammals and birds of Urbino. Arch Environ Contam Toxicol 51:123–134CrossRefGoogle Scholar
  6. Battaglia A, Ghidini S, Campanini G, Spaggiari R (2005) Heavy metal contamination in little owl (Athene noctua) and common buzzard (Buteo buteo) from northern Italy. Ecotoxicol Environ Saf 60:61–66CrossRefGoogle Scholar
  7. Behrouzi-Rad BE (2010) Population estimation and breeding biology of the house crow (Corvus splendens) on Kharg Island, Persian Gulf. Podoces 5(2):87–94Google Scholar
  8. Bilandžić N, Sedak M, Đokić M, Šimić B (2010) Wild boar tissue levels of cadmium, lead and mercury in seven regions of continental Croatia. Bull Environ Contam Toxicol 84:738–743CrossRefGoogle Scholar
  9. Brait CHH, Antoniosi Filho NR (2011) Use of feathers of feral pigeons (Columba livia) as a technique for metal quantification and environmental monitoring. Environ Monit Assess 179:457–467CrossRefGoogle Scholar
  10. Burger J (1993) Metals in avian feathers: bioindicators of environmental pollution. Rev Environ Toxicol 5:203–311Google Scholar
  11. Burger J, Kennamer RA, Brisbin IL, Gochfeld M (1997) Metal levels in mourning doves from South Carolina: potential hazards to doves and hunters. Environ Res 75:173–186CrossRefGoogle Scholar
  12. Chandler RB, Strong AM, Kaufman CC (2004) Elevated lead levels in urban house sparrows: a threat to sharp-shinned hawks and merlins? J Raptor Res 38(1):62–68Google Scholar
  13. Dauwe T, Bervoets L, Pinxten R, et al. (2003) Variation of heavy metals within and among feathers of birds of prey: effects of molt and external contamination. Environ Pollut 124:429–436CrossRefGoogle Scholar
  14. Dayang SN, Che Fauziah I (2013) Soil factors influencing heavy metal concentrations in medicinal plants. Pertanika J Trop Agric Sci 36(2):161–177Google Scholar
  15. Debacker V, Jauniaux T, Coignoul F, Bouquegneau JM (2000) Heavy metal contamination and body condition of wintering guillemots (Uria aalge) at the Belgian coast from 1993 to 1998. Environ Res 84A:310–317CrossRefGoogle Scholar
  16. Dmowski K (1999) Birds as bioindicators of heavy metal pollution: review and examples concerning European species. Acta Ornitol 34:1–25Google Scholar
  17. Eens M, Pinxten R, Verheyen RF, et al. (1999) Great and blue tits as indicators of heavy metal contamination in terrestrial ecosystems. Ecotoxicol Environ Saf 44:1–85CrossRefGoogle Scholar
  18. Franson JC (1996) Interpretation of tissue lead residues in birds other than waterfowl. In: Beyer WN, Heinz GH, Redmon-Norwood AW (eds) Environmental contaminants in wildlife: interpreting tissue concentrations. CRC/Lewis Press, Boca Raton, Florida, pp. 265–279Google Scholar
  19. Franson JC, Lahner LL, Meteyer CU, Rattner BA (2012) Copper pellets simulating oral exposure to copper ammunition: absence of toxicity in American kestrels (Falco sparverius). Arch Environ Contam Toxicol 62:145–153CrossRefGoogle Scholar
  20. Giammarino M, Quatto P, Squadrone S, Abete MC (2014) The hooded crow (Corvus cornix) as an environmental bioindicator species of heavy metal contamination. Bull Environ Contam Toxicol 93:410–416CrossRefGoogle Scholar
  21. Godt J, Scheidig F, Grosse-Siestrup C, et al. (2006) The toxicity of cadmium and resulting hazards for human health. J Occup Med Toxicol 1:22. doi: 10.1186/1745-6673-1-22. CrossRefGoogle Scholar
  22. Goede AA (1985) Mercury, selenium, arsenic and zinc in waders from the Dutch Wadden Sea. Environ Pollut Ser A Ecol Biol 37(4):287–309. doi: 10.1016/0143-1471(85)90119-9. CrossRefGoogle Scholar
  23. Grimmett R, Inskipp C, Inskipp T (1998) Birds of the Indian Subcontinent. 1st ed. Pp. 1–888. London: Christopher Helm, A & C BlackGoogle Scholar
  24. Hajeb P, Jinap S, Ismail A, et al. (2009) Assessment of mercury level in commonly consumed marine fishes in Malaysia. Food Control 20:79–84. doi: 10.1016/j.foodcont.2008.02.012. CrossRefGoogle Scholar
  25. Hajeb P, Selamat J, Ismail A, et al. (2008) Hair mercury level of coastal communities in Malaysia: a linkage with fish consumption. Eur Food Res Technol 227:1349–1355. doi: 10.1007/s00217-008-0851-9. CrossRefGoogle Scholar
  26. Horai S, Watanabe I, Takada H, et al. (2007) Trace element accumulations in 13 avian species collected from the Kanto area, Japan. Sci Total Environ 373:512–525. doi: 10.1016/j.scitotenv.2006.10.010. CrossRefGoogle Scholar
  27. Ikram MM, Ismail A, Yap CK, Azwady AAN (2010) Levels of heavy metals (Zn, Cu, Cd, and Pb) in mudskippers ( Periophthalmodon schlosseri) and sediments collected from intertidal areas at Morib and Remis, Peninsular Malaysia. Toxicol Environ Chem 92:1471–1486. doi: 10.1080/02772241003614304. CrossRefGoogle Scholar
  28. Ismail A (1993) Heavy metal concentrations in sediments off Bintulu, Malaysia. Mar Pollut Bull 26:706–707. doi: 10.1016/0025-326X(93)90556-Y CrossRefGoogle Scholar
  29. Ismail A, Badri MA, Noor Ramlan M (1993) The background levels of heavy metal concentration in sediments of the west coast of Peninsular Malaysia. Sci Total Environ 134:315–323. doi: 10.1016/S0048-9697(05)80032-4 CrossRefGoogle Scholar
  30. Ismail A, Jusoh NR, Ghani IA (1995) Trace metal concentrations in marine prawns off the Malaysian coast. Mar Pollut Bull 31:108–110. doi: 10.1016/0025-326X(95)00080-7 CrossRefGoogle Scholar
  31. Ismail A, Naji A (2011) Assessment of metals contamination in Klang River surface sediments by using different indexes. Environ. AsiaGoogle Scholar
  32. Ismail BS, Farihah K, Khairiah J (2005) Bioaccumulation of heavy metals in vegetables from selected agricultural areas. Bull Environ Contam Toxicol 74(2):320–327. doi: 10.1007/s00128-004-0587-6. CrossRefGoogle Scholar
  33. Janssens E, Dauwe T, Bervoets L, Eens M (2001) Heavy metals and selenium in feathers of great tits (Parus major) along a pollution gradient. Environ Toxicol Chem 20:2815–2820. doi: 10.1002/etc.5620201221 CrossRefGoogle Scholar
  34. Jaspers V, Dauwe T, Pinxten R, et al. (2004) The importance of exogenous contamination on heavy metal levels in bird feathers. A field experiment with free-living great tits, Parus major. J Environ Monit 6:356–360. doi: 10.1039/b314919f. CrossRefGoogle Scholar
  35. Jaswir I, Osman F (2009) Mineral and heavy metal contents of marine fin fish in Langkawi Island, Malaysia. Int Food Res J 16(1):237–244Google Scholar
  36. Jayakumar R, Muralidharan S (2011) Metal contamination in select species of birds in nilgiris district, Tamil Nadu, India. Bull Environ Contam Toxicol 87:166–170CrossRefGoogle Scholar
  37. Jenkins C (1975) Utilisation du pigeon biset (Columba livia Gm) comme témoin de la pollution atmosphérique par le plomb. C R Acad Sci Hebd Seances Acad Sci D 281:1187–1189Google Scholar
  38. Kalisin’ska E, Salicki W, Jackowski A (2006) Six trace metals in white-tailed eagle from northwestern Poland. Pol J Environ Stud 15:727–737Google Scholar
  39. Kamaruzzaman BY, Ong MC, Zaleha K, Shahbudin S (2008) Levels of heavy metals in green-lipped mussel Perna veridis (Linnaeus) from Muar Estuary, Johore, Malaysia. Pak J Biol Sci 11:2249–2253CrossRefGoogle Scholar
  40. Kekkonen J, IK H, RA V, JE B (2011) Levels of heavy metals in house sparrows (Passer domesticus) from urban and rural habitats of southern Finland. Ornis Fenn 89:91–98Google Scholar
  41. Kim J, Oh JM (2015) Assessment of trace element concentrations in birds of Prey in Korea. Arch Environ Contam Toxicol 71:1–9Google Scholar
  42. Klimkiewicz MK, Futcher AG (1989) Longevity records of North American birds Supplement. J Field Ornithol 60(4):469–494Google Scholar
  43. Komosa A, Kitowski I, Komosa Z (2012) Essential trace (Zn, Cu, Mn) and toxic (Cd, Pb, Cr) elements in the liver of birds from eastern Poland. Acta Vet Brno 62:579–589CrossRefGoogle Scholar
  44. Kotsonis FN, Klaassen CD (1977) Toxicity and distribution of cadmium administered to rats at sublethal doses. Toxicol Appl Pharmacol 41:667–680. doi: 10.1016/S0041-008X(77)80020-3 CrossRefGoogle Scholar
  45. Lande E (1977) Heavy metal pollution in Trondheimsfjorden, Norway, and the recorded effects on the fauna and flora. Environ Pollut 12:187–198CrossRefGoogle Scholar
  46. Lee DP, Honda K, Tatsukawa R, Won PO (1989) Distribution and residue level of mercury, cadmium and lead in Korean birds. Bull Environ Contam Toxicol 43:550–555CrossRefGoogle Scholar
  47. Lee S-W, Lee B-T, Kim J-Y, et al. (2006) Human risk assessment for heavy metals and as contamination in the abandoned metal mine areas, Korea. Environ Monit Assess 119:233–244. doi: 10.1007/s10661-005-9024-5. CrossRefGoogle Scholar
  48. Levengood JM, Sanderson GC, Anderson WL, et al. (1999) Acute toxicity of ingested zinc shot to game-farm mallards. Illinois Nat Hist Surv Bull 36:1–36Google Scholar
  49. Li X, Poon C, Liu PS (2001) Heavy metal contamination of urban soils and street dusts in Hong Kong. Appl Geochem 16:1361–1368. doi: 10.1016/S0883-2927(01)00045-2. CrossRefGoogle Scholar
  50. Lucia M, André J-M, Gontier K, et al. (2010) Trace element concentrations (mercury, cadmium, copper, zinc, lead, aluminium, nickel, arsenic, and selenium) in some aquatic birds of the Southwest Atlantic coast of France. Arch Environ Contam Toxicol 58:844–853. doi: 10.1007/s00244-009-9393-9 CrossRefGoogle Scholar
  51. Madge S, Burn H (1994) Crows and jays: a guide to the crows, jays, and magpies of the world. Houghton MifflinGoogle Scholar
  52. Manjula M, Mohanraj R, Devi MP (2015) Biomonitoring of heavy metals in feathers of eleven common bird species in urban and rural environments of Tiruchirappalli, India. Environ Monit Assess 187:267. doi: 10.1007/s10661-015-4502-x CrossRefGoogle Scholar
  53. Markowski M, Kaliński A, Skwarska J, et al. (2013) Avian feathers as bioindicators of the exposure to heavy metal contamination of food. Bull Environ Contam Toxicol 91:302–305. doi: 10.1007/s00128-013-1065-9 CrossRefGoogle Scholar
  54. Naccari C, Cristani M, Cimino F, et al. (2009) Common buzzards (Buteo buteo) bio-indicators of heavy metals pollution in Sicily (Italy). Environ Int 35:594–598. doi: 10.1016/j.envint.2008.11.002 CrossRefGoogle Scholar
  55. Naji A, Ismail A (2012) Metals fractionation and evaluation of their risk connected with urban and industrial influx in the Klang River surface sediments, Malaysia. Environ AsiaAsia 5:17–25Google Scholar
  56. Nam D-H, Lee D-P (2006) Monitoring for Pb and Cd pollution using feral pigeons in rural, urban, and industrial environments of Korea. Sci Total Environ 357:288–295. doi: 10.1016/j.scitotenv.2005.08.017 CrossRefGoogle Scholar
  57. Narjes O (2013) Biomonitoring of heavy metals in birds in Iran in relation to trophic levels. Intl Res J Appl Asic Sci 4(11):3478–3485Google Scholar
  58. Nighat S, Iqbal S, Nadeem MS, Mahmood T, Shah SI (2013) Estimation of heavy metal residues from the feathers of Falconidae, Accipitridae, and Strigidae in Punjab, Pakistan. Turk J Zool 37(4):488–500Google Scholar
  59. Outridge PM, Scheuhammer AM (1993) Bioaccumulation and toxicology of nickel: implications for wild mammals and birds. Environ Rev 1:172–197. doi: 10.1139/a93-013 CrossRefGoogle Scholar
  60. Ranta WB, Tomassini FD, Nieboer E (2011) Elevation of copper and nickel levels in primaries from black and mallard ducks collected in the Sudbury district, Ontario. Can J Zool 56(4):581–586CrossRefGoogle Scholar
  61. Roberts TJ (1992) The birds of Pakistan, The: Passeriformes: Pittas to Buntings (Vol. 2). Oxford University Press, LondonGoogle Scholar
  62. Samat N, Hasni R, Elhadary YAE (2011) Modelling land use changes at the Peri-urban areas using geographic information systems and cellular automata model. J Sustain Dev 4:72. doi: 10.5539/jsd.v4n6p72 CrossRefGoogle Scholar
  63. Sany SBT, Salleh A, Sulaiman AH, et al. (2012) Heavy metal contamination in water and sediment of the port Klang coastal area, Selangor, Malaysia. Environ Earth Sci 69:2013–2025. doi: 10.1007/s12665-012-2038-8 CrossRefGoogle Scholar
  64. Scheifler R, Coeurdassier M, Morilhat C, et al. (2006) Lead concentrations in feathers and blood of common blackbirds (Turdus merula) and in earthworms inhabiting unpolluted and moderately polluted urban areas. Sci Total Environ 371:197–205. doi: 10.1016/j.scitotenv.2006.09.011 CrossRefGoogle Scholar
  65. Sheppard SC, Grant CA, Sheppard MI, et al. (2009) Risk indicator for agricultural inputs of trace elements to Canadian soils. J Environ Qual 38:919–932. doi: 10.2134/jeq2008.0195 CrossRefGoogle Scholar
  66. Sileo L, Nelson Beyer W, Mateo R (2003) Pancreatitis in wild zinc-poisoned waterfowl. Avian Pathol 32:655–660. doi: 10.1080/03079450310001636246 CrossRefGoogle Scholar
  67. Swaileh KM, Sansur R (2006) Monitoring urban heavy metal pollution using the house sparrow (Passer domesticus). J Environ Monit 8:209–213. doi: 10.1039/b510635d CrossRefGoogle Scholar
  68. Taggart MA, Green AJ, Mateo R, et al. (2009) Metal levels in the bones and livers of globally threatened marbled teal and white-headed duck from El Hondo, Spain. Ecotoxicol Environ Saf 72:1–9. doi: 10.1016/j.ecoenv.2008.07.015 CrossRefGoogle Scholar
  69. Tejedor MC, Gonzalez M (1992) Comparison between lead levels in blood and bone tissue of rock doves (Columba livia) treated with lead acetate or exposed to the environment of Alcalá de Henares. Bull Environ Contam Toxicol. doi: 10.1007/BF00201143 Google Scholar
  70. Tsuji LJS, Karagatzides JD, Young J, Nieboer E (2002) Liver lead concentrations of several bird species from the western James bay region of northern Ontario, Canada: do the data support the Canadian nontoxic legislation? Bull Environ Contam Toxicol 69:309–313. doi: 10.1007/s00128-002-0062-1 CrossRefGoogle Scholar
  71. Yap CK, Ismail A, Tan SG (2003a) Cd and Zn concentrations in the straits of Malacca and intertidal sediments of the west coast of Peninsular Malaysia. Mar Pollut Bull 46:1349–1353. doi: 10.1016/S0025-326X(03)00193-0 CrossRefGoogle Scholar
  72. Yap CK, Ismail A, Tan SG (2003b) Background concentrations of Cd, Cu, Pb and Zn in the green-lipped mussel Perna Viridis (Linnaeus) from Peninsular Malaysia. Mar Pollut Bull 46:1044–1048. doi: 10.1016/S0025-326X(03)00163-2 CrossRefGoogle Scholar
  73. Yap CK, Ismail A, Tan SG, Omar H (2002) Correlations between speciation of Cd, Cu, Pb and Zn in sediment and their concentrations in total soft tissue of green-lipped mussel Perna viridis from the west coast of Peninsular Malaysia. Environ Int 28:117–126. doi: 10.1016/S0160-4120(02)00015-6 CrossRefGoogle Scholar
  74. Yuswir NS, Praveena SM, Aris AZ, et al. (2015) Health risk assessment of heavy metal in urban surface soil (Klang District, Malaysia). Bull Environ Contam Toxicol 95:80–89. doi: 10.1007/s00128-015-1544-2 CrossRefGoogle Scholar
  75. Zulkifli SZ, Ismail A, Mohamat-Yusuff F, et al. (2010a) Johor strait as a hotspot for trace elements contamination in peninsular Malaysia. Bull Environ Contam Toxicol 84:568–573. doi: 10.1007/s00128-010-9998-8 CrossRefGoogle Scholar
  76. Zulkifli SZ, Mohamat-Yusuff F, Arai T, et al. (2010b) An assessment of selected trace elements in intertidal surface sediments collected from the Peninsular Malaysia. Environ Monit Assess 169:457–472. doi: 10.1007/s10661-009-1189-x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Mohammed Janaydeh
    • 1
  • Ahmad Ismail
    • 1
  • Syaizwan Zahmir Zulkifli
    • 1
  • Mohd Hair Bejo
    • 2
  • Nor Azwady Abd. Aziz
    • 1
  • Ayat Taneenah
    • 1
  1. 1.Department of Biology, Faculty of ScienceUniversity Putra Malaysia (UPM)SerdangMalaysia
  2. 2.Department of Veterinary Pathology and Microbiology, Faculty of Veterinary MedicineUniversity Putra Malaysia (UPM)SerdangMalaysia

Personalised recommendations